Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127304    DOI: 10.1088/1674-1056/26/12/127304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum spin Hall and quantum valley Hall effects in trilayer graphene and their topological structures

Majeed Ur Rehman1,2, A A Abid1,2
1. ICQD, Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2. Key Laboratory of Geospace Environment(Chinese Academy of Sciences), Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026, China
Abstract  

The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essence of intrinsic spin-orbit coupling is analytically calculated. We find that for each valley and spin, Cs is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states, consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin-orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin-orbit (RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin-orbit coupling, while the other two layers have zero intrinsic spin-orbit coupling. Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.

Keywords:  trilayer graphene      quantum spin Hall effect      topological insulator      quantum phase transition  
Received:  28 April 2017      Revised:  31 August 2017      Accepted manuscript online: 
PACS:  73.43.-f (Quantum Hall effects)  
  73.20.-r (Electron states at surfaces and interfaces)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  73.43.Nq (Quantum phase transitions)  
Corresponding Authors:  Majeed Ur Rehman     E-mail:  majeedqau@live.com

Cite this article: 

Majeed Ur Rehman, A A Abid Quantum spin Hall and quantum valley Hall effects in trilayer graphene and their topological structures 2017 Chin. Phys. B 26 127304

[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Klitzing K V 1985 Nobel Lecture:The Quantized Hall Effect
[3] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[4] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[5] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[6] Xiao G L, Gu F Z, Guang F W, Hua C, Culcer D and Zhen Y Z 2013 Chin. Phys. B 22 097306
[7] Wang J and Zhu B F 2013 Chin. Phys. B 22 067301
[8] Thouless D J, Kohmoto M, Nightingale M P and Nijs M D 1982 Phys. Rev. Lett. 49 405
[9] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[10] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[11] Kane C L and and Mele E J 2005 Phys. Rev. Lett. 95 226801
[12] Buhmanna H 2011 J. Appl. Phys. 109 102409
[13] Li S, Chao L H You Y Y, Ning S D and Yu X D 2013 Chin. Phys. B 22 067201
[14] Ming G H and Ping F S 2012 Chin. Phys. B 21 077303
[15] Ming G H, Lin Z X and Ping F S 2012 Chin. Phys. B 21 0117301
[16] Gmitra M, Konschuh S, Ertler C, Draxl C A and Fabian J 2009 Phys. Rev. B 80 235431
[17] Fu L and Kane C L 2006 Phys. Rev. B 74 195312
[18] Chang M C and Niu Q 1995 Phys. Rev. Lett. 75 1348
[19] Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
[20] Park H and Marzari N 2011 Phys. Rev. B 84 205440
[21] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[22] YaoY G, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
[23] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp LW, Qi X L and Zhang S C 2007 Science 318 766
[24] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[25] Tahir M, Manchon A, Sabeeh K and Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412
[26] An X T, Zhang Y Y, Liu J J and Li S S 2013 Appl. Phys. Lett. 102 043113
[27] Xiao A D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[28] Qiao Z, Tse W K, Jiang H, Yao Y and Niu Q 2011 Phys. Rev. Lett. 107 256801
[29] Pan C H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[30] Yang F, Wang H L and Pan H 2017 Chin. Phys. B 26 017102
[31] Yu T H 2015 Chin. Phys. B 24 127301
[32] Mei Z, Wei W L, Jun D and Ying Z 2015 Acta Phys. Sin. 64 107301
[33] Wang K, Ren Y, Deng X, Yang S A, Jung J and Qiao Z 2017 Phys. Rev. B 95 245420
[34] Deng X, Qi S, Han Y, Zhang K, Xu X and Qiao Z 2017 Phys. Rev. B 95 121410
[35] Xu B, Li R and Fu H H 2017 Chin. Phys. B 26 057303
[36] Lu H Z and Shen S Q 2016 Chin. Phys. B 25 0117202
[37] Zheng Y J, Song J T and Li Y X 2016 Chin. Phys. B 25 037301
[38] Zeng J, Ren Y, Zhang K and Qiao Z 2017 Phys. Rev. B 95 045420
[39] Zhang J, Zhao B, Zhou T and Yang Z 2016 Chin. Phys. B 25 117308
[40] Qiao Z, Han Y, Zhang L, Wang K, Deng X, Jiang H, Yang S A, Wang J and Niu Q 2016 Phys. Rev. Lett. 117 056802
[41] Ren Y, Zeng J, Deng X, Yang F, Pan H and Qiao Z 2016 Phys. Rev. B 94 085411
[42] Kormanyos A and Burkard G 2013 Phys. Rev. B 87 045419
[43] Klinovaja J, Ferreira G J and Loss D 2012 Phys. Rev. B 86 235416
[44] Castro Neto A H and Guinea F 2009 Phys. Rev. Lett. 103 026804
[45] Konschuh S, Gmitra M, Kochan D and Fabian J 2012 Phys. Rev. B 85 115423
[46] Prada E, Jose P S, Brey L and Fertig H A 2011 Solid State Commun. 151 1075
[47] Yuan S, Roldan R and Katsnelson M I 2011 Phys. Rev. B 84 125455
[48] Zhang F, Sahu B, Min H and MacDonald A H 2010 Phys. Rev. B 82 035409
[49] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[50] Girvin S M and MacDonald A H 1997 Perspectives in Quantum Hall Effects (Wiley-Interscience)
[51] Volovik G E 2017 Low Temperature Physics 43 47
[52] Zvyagin A A 2016 Low Temperature Physics 42 971
[53] Sinitsyn N A, Hill J E, Min H, Sinova J and MacDonald A H 2006 Phys. Rev. Lett. 97 106804
[54] Schroeter D S and Garst M 2015 Low Temperature Physics 41 817
[55] Yang Y, Xu Z, Sheng L, Wang B, Xing D Y and Sheng D N 2011 Phys. Rev. Lett. 107 066602
[56] Koshino M and McCann E 2009 Phys. Rev. B 80 165409
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[3] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[4] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[5] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[6] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[7] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[8] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[9] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[10] Integer quantum Hall effect in Kekulé-patterned graphene
Yawar Mohammadi and Samira Bahrami. Chin. Phys. B, 2022, 31(1): 017305.
[11] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[12] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[13] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[14] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[15] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
No Suggested Reading articles found!