CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Segregations and desorptions of Ge atoms in nanocomposite Si1-xGex films during high-temperature annealing |
Yu Wang(汪煜)1, Meng Yang(杨濛)1, Gang Wang(王刚)1, Xiao-Xu Wei(魏晓旭)1, Jun-Zhuan Wang(王军转)1, Yun Li(李昀)1, Ze-Wen Zou(左则文)2, You-Dou Zheng(郑有炓)1, Yi Shi(施毅)1 |
1. Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2. College of Physics and Electronics Information, Anhui Normal University, Wuhu 241000, China |
|
|
Abstract Nanocomposite Si1-xGex films are deposited by dual-source jet-type inductively coupled plasma chemical vapor deposition (jet-ICPCVD). The segregations and desorptions of Ge atoms, which dominate the structural evolutions of the films during high-temperature annealing, are investigated. When the annealing temperature (Ta) is 900℃, the nanocomposite Si1-xGex films are well crystallized, and nanocrystals (NCs) with the core-shell structure form in the films. After being annealed at 1000℃ (above the melting point of bulk Ge), Ge atoms accumulate on the surfaces of Ge-rich films, whereas pits appear on films with lower Ge content, resulting from desorption. Meanwhile, voids are observed in the films. A cone-like structure involving the percolation of the homogeneous clusters and the crystallization of NCs enhances Ge segregation.
|
Received: 18 August 2017
Revised: 31 August 2017
Accepted manuscript online:
|
PACS:
|
68.55.-a
|
(Thin film structure and morphology)
|
|
68.55.A-
|
(Nucleation and growth)
|
|
Corresponding Authors:
Yi Shi
E-mail: yshi@nju.edu.cn
|
Cite this article:
Yu Wang(汪煜), Meng Yang(杨濛), Gang Wang(王刚), Xiao-Xu Wei(魏晓旭), Jun-Zhuan Wang(王军转), Yun Li(李昀), Ze-Wen Zou(左则文), You-Dou Zheng(郑有炓), Yi Shi(施毅) Segregations and desorptions of Ge atoms in nanocomposite Si1-xGex films during high-temperature annealing 2017 Chin. Phys. B 26 126801
|
[1] |
Fu Q, Zhang W R, Jin D Y, Ding C B, Zhao Y X and Lu D 2014 Chin. Phys. B 23 114402
|
[2] |
Schmidt J, Korn J, Fischer G G and Sorge R 2017 IEEE Trans. Nucl. Sci. 64 1037
|
[3] |
Dwivedi A D D, Chakravorty A, D'esposito R, Sahoo A K, Fregonese S and Zimmer T 2016 Solid-State Electronics 115 1
|
[4] |
Durmaz H, Sookchoo P, Cui X, Jacobson R B, Savage D E, Lagally M G and Paiella, R 2016 ACS Photonics 3 1978
|
[5] |
Ali D and Richardson C J 2014 Appl. Phys. Lett. 105 031116
|
[6] |
Li T T, Yang T, Fang J, Zhang D K, Sun J, Wei C C, Xu S Z, Wang G C, Liu C C, Zhao Y and Zhang X D 2016 Chin. Phys. B 25 046101
|
[7] |
Ganguly G, Ikeda T, Nishimiya T, Saitoh K, Kondo M and Matsuda A 1996 Appl. Phys. Lett. 69 4224
|
[8] |
Yan B, Zhao L, Chen J, Wang G, Diao H, Mao Y and Wang W 2013 Vacuum 89 43
|
[9] |
Vining C B, Laskow W, Hanson J O, Van der Beck R R and Gorsuch P D 1991 J. Appl. Phys. 69 4333
|
[10] |
Rowe D M, Shukla V S and Savvides N 1981 Nature 290 765
|
[11] |
Joshi G, Lee H, Lan Y C, Wang X W, Zhu G H, Wang D Z, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G and Ren Z F 2008 Nano Lett. 8 4670
|
[12] |
Wang X W, Lee H, Lan Y C, Zhu G H, Joshi G, Wang D Z, Yang J, Muto A J, Tang M Y, Klatsky J, Song S, Dresselhaus M S, Chen G and Ren Z F 2008 Appl. Phys. Lett. 93 193121
|
[13] |
Xie W, Wang S, Zhu S, He J, Tang X, Zhang Q and Tritt T M 2013 J. Mater. Sci. 48 2745
|
[14] |
Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G and Ren Z F 2008 Science 320 634
|
[15] |
Gresback R, Holman Z and Kortshagen U 2007 Appl. Phys. Lett. 91 093119
|
[16] |
Pi X D and Kortshagen U 2009 Nanotechnology 20 295602
|
[17] |
Yang Y M, Wu X L, Siu G G, Huang G S, Shen J C and Hu D S 2004 J. Appl. Phys. 96 5239
|
[18] |
Zuo Z W, Wang Y, Lu J, Wang J J, Pu L, Shi Y and Zheng Y D 2012 Vacuum 86 924
|
[19] |
Wang Y, Yang M, Wang G, Wei X X, Wang J Z, Li Y, Zuo Z W, Zheng Y D and Shi Y 2015 AIP Advances 5 117127
|
[20] |
Murley D T, Gibson R A G, Dunnett B, Goodyear A and French I D 1995 J. Non-Cryst. Solids 187 324
|
[21] |
Ifuku T, Otobe M, Itoh A and Oda S 1997 Jpn. J. Appl. Phys. 36 4031
|
[22] |
Alonso M I and Winer K 1989 Phys. Rev. B 39 10056
|
[23] |
Liu L Z, Wu X L, Shen J C, Li T H, Gao F and Chu P K 2010 Chem. Commun. 46 5539
|
[24] |
Tzoumanekas C and Kelires P C 2000 J. Non-Cryst. Solids 266 670
|
[25] |
Tzoumanekas C and Kelires P C 2003 Appl. Phys. Lett. 82 4681
|
[26] |
Zhang Z, Pan J S, Zhang J and Tok E S 2010 PCCP 12 7171
|
[27] |
Walther T, Humphreys C J and Cullis A G 1997 Appl. Phys. Lett. 71 809
|
[28] |
Fukatsu S, Fujita K, Yaguchi H, Shiraki Y and Ito R 1991 Appl. Phys. Lett. 59 2103
|
[29] |
Tok E S, Woods N J and Zhang J 2000 J. Cryst. Growth 209 321
|
[30] |
Vallat-Sauvain E, Kroll U, Meier J, Shah A and Pohl J 2000 J. Appl. Phys. 87 3137
|
[31] |
Heitjans P and Kärger J (eds) 2006 Diffusion in condensed matter:methods, materials, models (Berlin:Springer Science & Business Media) p. 331
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|