Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 126201    DOI: 10.1088/1674-1056/26/12/126201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Negative linear compressibility of generic rotating rigid triangles

Xiao-Qin Zhou(周晓勤), Lei Zhang(张磊), Lu Yang(杨璐)
School of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
Abstract  The compressibility properties of systems consisting of generic rotating rigid triangles are analyzed and discussed. It is shown that these systems which are usually associated with auxeticity can exhibit strongly anisotropic properties for certain conformations, which may give rise to the anomalous property of negative linear compressibility (NLC), that is, the system with particular geometry will expand along one direction when loaded hydrostatically. It is also shown that through carefully choosing the geometric features (i.e. the dimensions and the alignment of the rotating triangles as well as the angles between them) and the direction along which the linear compressibility is measured, one may control the magnitude and range of the NLC. All this provides a novel but effective method of manufacturing the systems which can be tailored to achieve particular values of NLC to fit particular practical applications.
Keywords:  negative linear compressibility      rotating rigid triangles      analytical methods      microstructure  
Received:  17 March 2017      Revised:  31 August 2017      Accepted manuscript online: 
PACS:  62.20.-x (Mechanical properties of solids)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  81.05.Zx (New materials: theory, design, and fabrication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51475208).
Corresponding Authors:  Xiao-Qin Zhou     E-mail:  xqzhou@jlu.edu.cn

Cite this article: 

Xiao-Qin Zhou(周晓勤), Lei Zhang(张磊), Lu Yang(杨璐) Negative linear compressibility of generic rotating rigid triangles 2017 Chin. Phys. B 26 126201

[1] Baughman R H, Stafstrom S, Cui C and Pantas S O 1998 Science 279 1522
[2] Fortes A D, Suard E and Knight K S 2011 Science 331 742
[3] Mariathasan J W E, Finger L W and Hazen R M 1985 Acta Cryst. B 41 179
[4] Goodwin A L, Keen D A and Tucker M G 2008 Proc. Natl. Acad. Sci. USA 105 18708
[5] Skelton E F, Feldman J L, Liu C Y and Spain I L 1976 Phys. Rev. B 13 2605
[6] Millange F, Serre C and Férey G 2002 Chem. Commun. 822
[7] Grima J N, Attard D, Caruana-Gauci R and Gatt R 2011 Scr. Mater. 65 565
[8] Barnes D L, Miller W, Evans K E and Marmier A 2012 Mech. Mater. 46 123
[9] Grima J N, Attard D and Gatt R 2008 Phys. Stat. Sol. 245 2405
[10] Gatt R and Grima J N 2008 Phys. Stat. Sol. (RRL) 2 236
[11] Gatt R, Attard D andGrima J N 2009 Scr. Mater. 60 65
[12] Jiang X X, Luo S Y, Kang L, Gong P F, Yao W J, Huang H W, Lo W, Huang R J, Wang W, Li Y C, Li X D, Wu X, Lu P X, Li L F, Chen C T and Lin Z S 2015 Adv. Mater. 27 4851
[13] Cairns A B and Goodwin A L 2015 Phys. Chem. Chem. Phys. 17 20449
[14] Miller W, Evans K E and Marmier A 2015 Appl. Phys. Lett. 106 231903
[15] Zhang J M, Zhang Y, Xu K W and Ji V 2008 Chin. Phys. B 17 1565
[16] Wang J F, Fu X N, Zhang X D, Wang J T, Li X D and Jiang Z Y 2016 Chin. Phys. B 25 086302
[17] Hu C H, Yin X H, Wang D H, Zhong Y, Zhou H Y and Rao G H 2016 Chin. Phys. B 25 067801
[18] Grima J N, Gatt R, Alderson A and Evans K E 2005 J. Phys. Soc. 74 2866
[19] Grima J N and Evans K E 2006 J. Mater. Sci. 41 3193
[20] Grima J N, Gatt R, Ellul B and Chetcuti R 2010 J. Non-Cryst. Sol. 356 1980
[21] Grima J N and Evans K E 2000 J. Mater. Sci. Lett. 19 1563
[22] Grima J N, Chetcuti E, Manicaro E, Attard D, Camilleri M, Gatt R and Evans K E 2012 Proc. R. Soc. A 468 810
[23] Milton G W and Cherkaev A V 1995 J. Eng. Mater. Technol. 117 483.
[24] Milton G W 2013 J. Mech. Phys. Solids 61 1543
[25] Dudek K K, Attard D, Caruana-Gauci R, Wojciechowski K W and Grima J N 2016 Smart Mater. Struct. 25 025009
[26] Attard D, Caruana-Gauci R, Gatt R, and Grima J N 2016 Phys. Stat. Sol. 253 1410
[27] Bianchi M, Scarpa F and Smith C W 2010 Acta Mater. 58 858
[28] Bianchi M, Scarpa F and Smith C W 2011 Acta Mater. 59 686
[29] Grima J N, Jackson R, Alderson A and Evans K E 2000 Adv. Mater. 12 1912
[30] Grima J N, Gatt R, Ravirala N, Alderson A and Evans K E 2006 Mat. Sci. Eng. A 423 214
[31] Grima J N, Attard D, Gatt R and Cassar R N 2009 Adv. Eng. Mater. 11 533
[32] Lakes R S 1987 Science 235 1038
[33] Nye J F 1957 Physical Properties of Crystals (New York:Oxford University Press) pp. 33-49
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[7] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[8] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[9] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[10] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[11] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[12] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[13] Negative compressibility property in hinging open-cell Kelvin structure
Meng Ma(马梦), Xiao-Qin Zhou(周晓勤), Hao Liu(刘浩), and Hao-Cheng Wang(王浩成). Chin. Phys. B, 2021, 30(5): 056201.
[14] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[15] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
No Suggested Reading articles found!