Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 126105    DOI: 10.1088/1674-1056/26/12/126105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Mechanical, elastic, anisotropy, and electronic properties of monoclinic phase of m-SixGe3-xN4

Zhen-Yang Ma(马振洋), Fang Yan(阎芳), Su-Xin Wang(王苏鑫), Qiong-Qiong Jia(贾琼琼), Xin-Hai Yu(于新海), Chun-Lei Shi(史春蕾)
Tianjin Key Laboratory for Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, China
Abstract  The structural, mechanical, elastic anisotropic, and electronic properties of the monoclinic phase of m-Si3N4, m-Si2GeN4, m-SiGe2N4, and m-Ge3N4 are systematically investigated in this work. The calculated results of lattice parameters, elastic constants and elastic moduli of m-Si3N4 and m-Ge3N4 are in good agreement with previous theoretical results. Using the Voigt-Reuss-Hill method, elastic properties such as bulk modulus B and shear modulus G are investigated. The calculated ratio of B/G and Poisson's ratio v show that only m-SiGe2N4 should belong to a ductile material in nature. In addition, m-SiGe2N4 possesses the largest anisotropic shear modulus, Young's modulus, Poisson's ratio, and percentage of elastic anisotropies for bulk modulus AB and shear modulus AG, and universal anisotropic index AU among m-SixGe3-xN4 (x=0, 1, 2, 3.) The results of electronic band gap reveal that m-Si3N4, m-Si2GeN4, m-SiGe2N4, and m-Ge3N4 are all direct and wide band gap semiconducting materials.
Keywords:  SixGe3-xN4      mechanical properties      elastic anisotropic      electronic properties  
Received:  08 August 2017      Revised:  06 September 2017      Accepted manuscript online: 
PACS:  61.50.-f (Structure of bulk crystals)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.Nr (Semiconductor compounds)  
  71.55.Cn (Elemental semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61601468), the Fundamental Research Funds for the Central Universities, China (Grant No. 3122014C024), and the Fund for Scholars of Civil Aviation University of China (Grant No. 2013QD06X).
Corresponding Authors:  Zhen-Yang Ma     E-mail:  zyma@cauc.edu.cn

Cite this article: 

Zhen-Yang Ma(马振洋), Fang Yan(阎芳), Su-Xin Wang(王苏鑫), Qiong-Qiong Jia(贾琼琼), Xin-Hai Yu(于新海), Chun-Lei Shi(史春蕾) Mechanical, elastic, anisotropy, and electronic properties of monoclinic phase of m-SixGe3-xN4 2017 Chin. Phys. B 26 126105

[1] Jack K H 1976 J. Mater. Sci. 11 1135
[2] Clarke D R, Lange F F and Schnittgrund G D 1982 J. Am. Ceram. Soc. 65 c51
[3] Riley F L 2000 J. Am. Ceram. Soc. 83 245
[4] Xu B, Dong J J, McMillan P F, Shebanova O and Salamat A 2011 Phys. Rev. B 84 014113
[5] Ching W Y, Mo S D, Ouyang L Z, Rulis P, Tanaka I and Yoshiya M 2002 J. Am. Ceram. Soc. 85 75
[6] Yu B H and Chen D 2013 J. Alloys Compd. 581 747
[7] Yu B H and Chen D 2012 Physica B 407 4660
[8] Wang H, Chen Y, Kaneta Y and Iwata S 2006 J. Phys.:Condens. Mater. 18 10663
[9] Ching W Y, Mo S D and Ouyang L 2001 Phys. Rev. B 63 245110
[10] Moakafi M, Khenata R, Bouhemadou A, Benkhettou N, Rached D, Reshak A and Elastic H 2009 Phys. Lett. A 373 2393
[11] Bouhemadou A, Al-Douri Y, Khenata R and Haddadi K 2009 Eur. Phys. J. B 71 185
[12] Zhang X Y, Chen Z W, Du H J, Ma M Z, He J L, Tian Y J and Liu R P 2008 J. Appl. Phys. 103 083533
[13] Cui L, Hu M, Wang Q Q, Xu B, Yu D L, Liu Z Y and He J L 2015 J. Solid State Chem. 228 20
[14] Cang Y P, Chen D, Yang F and Yang H M 2016 Chem. J. Chin. Univer. 37 674
[15] Fan Q Y, Chai C C, Wei Q, Zhou P K and Yang Y T 2016 AIP Adv. 6 085207
[16] Chen D, Cheng K and Qi B Y 2017 Chin. Phys. B 26 046303
[17] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[18] Kohn W and Sham L J 1965 Phy. Rev. 137 1697
[19] Clark S.J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Krist.-Cryst. Mater. 220 567
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L and Burke K 2008 Phys. Rev. Lett. 100 136406
[22] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[23] Perdew J P, Mcmullen E R and Zunger A 1981 Phys. Rev. A 23 2785
[24] Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[25] Vanderbilt D 1990 Phys. Rev. B 41 7892
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J Chem. Phys. 125 224106
[28] Nye J F 1985 Physical properties of crystals (New York:Oxford university press)
[29] Hao X P and Cui H L 2014 J. Korean Phys. Soc. 65 45
[30] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[31] Reuss A 1929 Z. Angew. Math. Mech. 9 49
[32] Vaitheeswaran G, Kanchana V, Kumar R S, Cornelius A L, Nicol M F, Savane A, Delin A and Johansson B 2007 Phys. Rev. B 76 014107
[33] Liu Y, Hu W C, Li D J, Zeng X Q and Xu C S 2013 Phys. Scr. 88 045302
[34] Duan Y H, Sun Y, Peng M J and Zhou S G 2014 J. Alloys Compd. 595 14
[35] Pugh S F 1954 Philos. Mag. 45 823
[36] Anderson O L 1963 J. Phys. Chem. Solids. 24 909
[37] Fan Q Y, Chai C C, Wei Q, Yan H Y, Zhao Y B, Yang Y T, Yu X H, Liu Y, Xing M J, Zhang J.Q and Yao R H 2015 J. Appl. Phys. 118 185704.
[38] Duan Y H, Huang B, Sun Y, Peng M J and Zhou S G 2014 J. Alloys Compd. 590 50
[39] Hu W C, Liu Y, Li D J, Zeng X Q and Xu C S 2014 Comput. Mater. Sci. 83 27
[40] Li J, Zhang M and Luo X 2013 J. Alloys Compd. 556 214
[41] Pan Y, Zheng W T, Guan W M, Zhang K H and Fan X F 2013 J. Solid State Chem. 207 29
[42] Duan Y H, Sun Y, Peng M J and Zhou S G 2014 J. Alloys Compd. 595 14
[43] Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[44] Fan Q Y, Wei Q, Yan H Y, Zhang M G, Zhang Z X, Zhang J Q and Zhang D Y 2014 Comput. Mater. Sci. 85 80
[45] Marmier A, Lethbridge Z A D, Walton R I, Smith C W, Parker S C and Evans K E 2010 Comput. Phys. Commun. 181 2102
[46] Hu W C, Liu Y, Li D J, Zeng X Q and Xu C S 2014 Comput. Mater. Sci. 83 27
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[4] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[5] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[6] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[7] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[8] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[9] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[12] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[13] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[14] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[15] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
No Suggested Reading articles found!