ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Optical properties of a three-dimensional chiral metamaterial |
Juan-Juan Guo(郭娟娟), Mao-Sheng Wang(汪茂胜), Wan-Xia Huang(黄万霞) |
College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000, China |
|
|
Abstract A three-dimensional chiral metamaterial with four-fold rotational symmetry is designed, and its optical properties are investigated by numerical simulations. The results show that this chiral metamaterial has the following features:high polarization conversion, perfect circular dichroism, and asymmetric transmission of circularly polarized light. A comparison of the results of chiral metamaterials without and with weak coupling between the constituent nanostructures enables us to confirm that the optical properties of our proposed nanostructure are closely related to the coupling between the single nanoparticles. This means that the coupling between nanoparticles can enhance the polarization conversion, circular dichroism, and asymmetric transmission. Due to the excellent optical properties, our metamaterial might have potential applications in the development of future multi-functional optical devices.
|
Received: 04 June 2017
Revised: 06 September 2017
Accepted manuscript online:
|
PACS:
|
42.70.-a
|
(Optical materials)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304002), the Natural Science Foundation of Education Bureau of Anhui Province, China (Grant No. KJ2013A136), and the Natural Science Foundation of Anhui Province, China (Grant No. 1208085MA07). |
Corresponding Authors:
Mao-Sheng Wang
E-mail: wangms@mail.ahnu.edu.cn
|
Cite this article:
Juan-Juan Guo(郭娟娟), Mao-Sheng Wang(汪茂胜), Wan-Xia Huang(黄万霞) Optical properties of a three-dimensional chiral metamaterial 2017 Chin. Phys. B 26 124211
|
[1] |
Ren M, Plum E, Xu J and zheludev N I 2012 Nat. Commun. 3 833
|
[2] |
Plum E, Liu X X, Fedotov V A, Chen Y, Tsai D P and Zheludev N I 2009 Phys. Rev. Lett. 102 113902
|
[3] |
Rogacheva A V, Fedotov V A, Schwanecke A S and Zheludev N I 2006 Phys. Rev. Lett. 97 177401
|
[4] |
Yang Z J, Hu D J, Gao F H and Hou Y D 2016 Chin. Phys. B 25 084201
|
[5] |
Wu S, Zhang Z, Zhang Y, Zhang K, Zhou L, Zhang X and Zhu Y 2013 Phys. Rev. Lett. 110 207401
|
[6] |
Shao J, Li J, Wang Y H, Li J Q, Dong Z G and Zhou L 2016 Chin. Phys. B 25 058103
|
[7] |
Li W, Coppens Z J, Besteiro L V, Wang W Y, Govorov A O and Valentine J 2015 Nat. Commun. 6 8379
|
[8] |
Decker M, Klein M W, Wegener M and Linden S 2007 Opt. Lett. 32 856
|
[9] |
Abdulrahman N A, Fan Z, Tonooka T, Kelly S M, Gadegaard N, Hendry E, Govorov A O and Kadodwala M 2012 Nano Lett. 12 977
|
[10] |
Pfeiffer C, Zhang C, Ray V, Guo L J and Grbic A 2014 Phys. Rev. Lett. 113 023902
|
[11] |
Menzel C, Helgert C, Rockstuhl C, Kley E B, Tünnermann A, Pertsch and Lederer F 2010 Phys. Rev. Lett. 104 253902
|
[12] |
Plum E, Fedotov V A and Zheludev N I 2009 Appl. Phys. Lett. 94 131901
|
[13] |
Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y and Zheludev N I 2006 Phys. Rev. Lett. 97 167401
|
[14] |
Huang L, Fan Y H, Wu S and Yu L Z 2015 Chin. Phys. Lett. 32 094101
|
[15] |
Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S and Wegener M 2009 Science 325 1513
|
[16] |
Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N and Kadodwala M 2010 Nat. Nanotechnol. 5 783
|
[17] |
Hentschel M, Schäferling M, Weiss T, Kuball H G, Liu N and Giessen H W 2012 Nano Lett. 12 2542
|
[18] |
Liu M, Zentgraf T, Liu Y, Bartal G and Zhang X 2010 Nat. Nanotechnol. 5 570
|
[19] |
Kim K, Xu X, Guo J and Fan D L 2014 Nat. Commun. 5 3632
|
[20] |
Tkachenko G and Brasselet E 2014 Nat. Commun. 5 3577
|
[21] |
Zhang S, Park Y, Li J, Lu X, Zhang W and Zhang X 2009 Phys. Rev. Lett. 102 023901
|
[22] |
Plum E, Zhou J, Dong J, Fedotov V A, Koschny T, Soukoulis C M and Zheludev N I 2009 Phys. Rev. B 79 035407
|
[23] |
Pendry J B 2004 Science 306 1353
|
[24] |
Menzel C, Rockstuhl C and Lederer F 2010 Phys. Rev. A 82 053811
|
[25] |
Husu H, Canfield B K, Laukkanen J, Bai B, Kuittinen M, Turunen J and Kauranen M 2008 Appl. Phys. Lett. 93 183115
|
[26] |
Huang W X, Zhang Y, Tang X M, Cai L S, Zhao J W, Zhou L, Wang Q J, Huang C P and Zhu Y Y 2011 Opt. Lett. 36 3359
|
[27] |
Wang Z K, Yang Z Y, Tao H and Zhao M 2016 Acta Phys. Sin. 65 217802(in Chinese)
|
[28] |
Hassey R, Swain E J, Hammer N I, Venkataraman D and Barnes M D 2006 Science 314 1437
|
[29] |
Ye Y and He S 2010 Appl. Phys. Lett. 96 203501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|