Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097306    DOI: 10.1088/1674-1056/aba9ce
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced circular dichroism of TDBC in a metallic hole array structure

Tiantian He(何田田)1, Qihui Ye(叶起惠)2, Gang Song(宋钢)3
1 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 International School, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We investigate the enhanced chirality of chiral molecular J-aggregates (TDBC) by the propagating surface plasmons (PSPs) in the metallic hole array structure filled with TDBC. The two ends of the hole in the metal film form a low quality factor Fabry-Perot (FP) cavity, and this cavity confines PSPs. The resonant wavelength of the metallic hole array is tuned by the lattice constant and the size of the hole. Both the resonant wavelength of Ag hole array and the volume ratio of TDBC in the hybridized structure influence on the enhancement of the circular dichroism (CD) spectrum. The curve of CD spectrum shows Fano-like line-shape, due to the interaction between the non-radiative field in the FP cavity and the radiative field in chiral TDBC. The maximum of the CD spectrum of the hybridized structure is 0.025 times as the one of the extinction spectrum in a certain structure, while the maximum of the CD spectrum of TDBC is 1/3000 times as the one of the extinction spectrum. The enhanced factor is about 75. The resonant wavelength of the metallic hole array can be tuned in a large wavelength regime, and the chirality of a series of molecular J-aggregates with different resonant wavelengths can be enhanced. Our structure provides a new method to amplify the chirality of molecular J-aggregates in experiments.
Keywords:  propagating surface plasmons      chirality      circular dichroism  
Received:  19 May 2020      Revised:  13 July 2020      Accepted manuscript online:  28 July 2020
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  87.64.Nj  
Fund: Project supported by the Fundamental Research Funds for the Central Universities and the National Key R&D Program of China (Grant No. 2016YFA0301300).
Corresponding Authors:  Gang Song     E-mail:  sg2010@bupt.edu.cn

Cite this article: 

Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢) Enhanced circular dichroism of TDBC in a metallic hole array structure 2020 Chin. Phys. B 29 097306

[1] Webb R L 1996 J. Med. Chem. 39 5285
[2] Govorov A O, Fan Z Y, Hernandez P, Slocik J M and Naik R R 2010 Nano Lett. 10 1374
[3] Bruchez M P, Moronne M M, Gin P, Weiss S and Alivisatos A P 1998 Science 281 2013
[4] Chan W C and Nie S 1998 Science 281 2016
[5] Prodan E 2003 Science 302 419
[6] Crookes-Goodson W J, Slocik J M and Naik R R 2008 Chem. Soc. Rev. 37 2403
[7] Tang Y and Ouyang M 2007 Nat. Mater. 6 754
[8] Scholl J A, Koh A L and Dionne J A 2012 Nature 483 421
[9] Zhao Y, Xu L G, Ma W, Wang L B, Kuang H, Xu C L and Kotov N A 2014 Nano Lett. 14 3908
[10] Qiang B, Dubrovkin A M, Krishnamoorthy H N S, Wang Q, Soci C, Zhang Y, Teng J H and Wang Q J 2019 Adv. Photon. 1 026001
[11] Dai X Y, Yang Y and Zhang G H 2020 Chin. Phys. B 29 057302
[12] Lu H, Xiao F J, Zhao J L, Zhang H M and Shang W Y 2018 Chin. Phys. B 27 117301
[13] Jiang W, Xu Y H, Zhang S P, Xu H X, Chen W and Hu H T 2018 Chin. Phys. B 27 107403
[14] Chervy T, Azzini S, Lorchat E, Wang S J, Gorodetski Y, Hutchison J A, Berciaud S, Ebbesen T W and Genet C 2018 ACS Photon. 5 1281
[15] Alizadeh M H and Reinhard B M 2015 ACS Photon. 2 1780
[16] Jiang Q B, Pham A, Berthel M, Huant S, Bellessa J, Genet C and Drezet A 2016 ACS Photon. 3 1116
[17] Lan X and Wang Q B 2016 Adv. Mater. 28 10499
[18] Caridad J M, Winters S, McCloskey D, Duesberg G S, Donegan J F and Krstić V 2018 Nanotechnology 29 325204
[19] Song G, Guo J Q, Duan G Y, Jiao R Z and Yu L 2020 Nanotechnology 31 345202
[20] Ruan Z C and Qiu M 2006 Phys. Rev. Lett. 96 233901
[21] Song G, Li Y, Wu C,Duan G Y, Wang L L and Xiao J H 2013 Plasmonics 8 943
[22] Song G, Yu L, Duan G Y and Wang L L 2017 J. Phys. D: Appl. Phys. 50 205104
[23] Zou Y F, Song G, Jiao R Z, Duan G Y and Yu L 2019 Nanoscale Res. Lett. 14 74
[24] Aneta P, Maciej C, Justyna G, Dorota K, Marcin N, Sebastian M and Dawid P 2018 Nanoscale 10 12841
[25] Zhang D G, Xiang Y F, Chen J X, Cheng J J, Zhu L F, Wang R X, Zou G, Wang P, Ming H and Rosenfeld M 2018 Nano Lett. 18 1152
[26] Kravets V G, Kabashin A V, Barnes W L and Grigorenko A N 2018 Chem. Rev. 118 5912
[27] Wu Z H and Zhao T 2020 Chin. Phys. B 29 034101
[28] Min C J, Zhang Y Q, Yang J J, Guo C L, Yuan X C, Wang Y L and Zhao B 2020 Chin. Phys. B 29 027302
[29] Pang K W, Song G,Yu L and Li H H 2019 Chin. Phys. B 28 127301
[30] Xiao Y C, Lu W, Yi H, Shi C, Jing X X, Li Z, Long H and Zeng X K 2019 Chin. Phys. B 28 094215
[31] Guo Y H, Pu M B, Zhao Z Y, Wang Y Q, Jin J J, Gao P, Li X, Ma X L and Luo X G 2016 ACS Photon. 3 2022
[32] Zhang F, Pu M B, Li X, Gao P, Ma X L, Luo J, Yu H L and Luo X G 2017 Adv. Funct. Mater. 27 1704295
[33] Nemati A, Wang Q, Hong M H and Teng J H 2018 Opto-Electron. Adv. 01 180009
[34] Mao L B,Liu K, Zhang S and Cao T 2020 ACS Photon. 7 375
[35] Palik E D 1998 Handbook of optical constants of solids, Vol. 3 (Academic Press)
[36] Auguie B and Barnes W L 2008 Phys. Rev. Lett. 101 143902
[37] Born M 1999 Principles of optics – electromagnetic theory of propagation, interference and diffraction of light, 7th edn. (DBLP)
[38] Shen Y and Wang G P 2008 Opt. Express 16 8421
[39] Maier S A 2007 Plasmonics: Fundamentals and Applications, Vol. 2 (Spring Press)
[40] Wood R W 1902 Proc. Phys. Soc. London 18 269
[41] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[4] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[5] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[6] Circular dichroism spectra of α -lactose molecular measured by terahertz time-domain spectroscopy
Chun Wang(王春), Bo Wang(王博), Gaoshuai Wei(魏高帅), Jianing Chen(陈佳宁), and Li Wang(汪力). Chin. Phys. B, 2022, 31(10): 104201.
[7] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[8] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[9] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
[10] Helicity of harmonic generation and attosecond polarization with bichromatic circularly polarized laser fields
Jun Zhang(张军), Tong Qi(齐桐), Xue-Fei Pan(潘雪飞), Jing Guo(郭静), Kai-Guang Zhu(朱凯光), Xue-Shen Liu(刘学深). Chin. Phys. B, 2019, 28(10): 103204.
[11] Quantitative measurement of magnetic parameters by electron magnetic chiral dichroism
Dong-Sheng Song(宋东升), Zi-Qiang Wang(王自强), Xiao-Yan Zhong(钟虓龑), Jing Zhu(朱静). Chin. Phys. B, 2018, 27(5): 056801.
[12] Optical properties of a three-dimensional chiral metamaterial
Juan-Juan Guo(郭娟娟), Mao-Sheng Wang(汪茂胜), Wan-Xia Huang(黄万霞). Chin. Phys. B, 2017, 26(12): 124211.
[13] Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime
Jian Shao(邵健), Jie Li(李杰), Ying-Hua Wang(王英华), Jia-Qi Li(李家奇), Zheng-Gao Dong(董正高), Lin Zhou(周林). Chin. Phys. B, 2016, 25(5): 058103.
[14] A planar chiral nanostructure with asymmetric transmission of linearly polarized wave and huge optical activity in near-infrared band
Liu Dao-Ya (刘道亚), Luo Xiao-Yang (罗孝阳), Liu Jin-Jing (刘锦景), Dong Jian-Feng (董建峰). Chin. Phys. B, 2013, 22(12): 124202.
[15] Electromagnetic chirality-induced negative refraction with the same amplitude and anti-phase of the two chirality coefficients
Zhao Shun-Cai (赵顺才), Liu Zheng-Dong (刘正东), Zheng Jun (郑军), Li Gen (黎根). Chin. Phys. B, 2011, 20(6): 067802.
No Suggested Reading articles found!