Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020504    DOI: 10.1088/1674-1056/ac720d
GENERAL Prev   Next  

Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane

Nkeh Oma Nfor1,2,†, Patrick Guemkam Ghomsi2, and Francois Marie Moukam Kakmeni2
1 Department of Physics, HTTC Bambili, University of Bamenda, P. O. Box 39 Bambili, Cameroon;
2 Complex Systems and Theoretical Biology Group, Laboratory of Research on Advanced Materials and Nonlinear Science(LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P. O. Box 63 Buea, Cameroon
Abstract  We systematically study the evolution of modulated nerve impulses in a myelinated nerve fiber, where both the ionic current and membrane capacitance provide the necessary nonlinear feedbacks. This is achieved by using a perturbation technique, in which the Liénard form of the modified discrete Fitzhugh-Nagumo equation is reduced to the complex Ginzburg-Landau amplitude equation. Three distinct values of the capacitive feedback parameter are considered. At the critical value of the capacitive feedback parameter, it is shown that the dynamics of the system is governed by the dissipative nonlinear Schrödinger equation. Linear stability analysis of the system depicts the instability of plane waves, which is manifested as burst of modulated nerve impulses that fulfills the Benjamin-Feir criteria. Variations of the capacitive feedback parameter generally influences the plane wave stability and hence the type of wave profile identified in the neural network. Results of numerical simulations mainly confirm the propagation, collision, and annihilation of nerve impulses in the myelinated axon.
Keywords:  myelinated nerve      Fitzhugh-Nagumo      capacitive feedback parameter      Ginzburg-Landau      collision      annihilation  
Received:  09 April 2022      Revised:  08 May 2022      Accepted manuscript online:  23 May 2022
PACS:  05.45.Yv (Solitons)  
Corresponding Authors:  Nkeh Oma Nfor     E-mail:  omnkeh@gmail.com

Cite this article: 

Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane 2023 Chin. Phys. B 32 020504

[1] Nfor N O, Ghomsi P G and Moukam Kakmeni F M 2018 Phys. Rev. E 97 022214
[2] Achu F G, Mkam S E, Moukam Kakmeni F M and Tchawoua C 2018 Phys. Rev. E 98 022216
[3] Achu F G, Moukam Kakmeni F M and Dikandé A M 2018 Phys. Rev. E 97 012211
[4] Nfor N O and Mokoli M T 2016 J. Mod. Phys. 7 1166
[5] Moukam Kakmeni F M, Inack E M and Yamakou E M 2014 Phys. Rev. E 89 052919
[6] Dikandé A M and Bartholomew G A 2009 Phys. Rev. E 80 041904
[7] Keener J 1980 SIAM J. Appl. Math. 39 528
[8] Murray J D 2002 Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd edn (Berlin: Springer-Verlag)
[9] Hodgkin A L and Huxley A F 1945 J. Physiol. 104 176
[10] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[11] FitzHugh R A 1961 Biophys. J. 1 445
[12] Nagumo J, Arimoto S and Yoshitzawa S 1962 Proc. IRE 50 2061
[13] Sherwood L 2001 Human Physiology: From Cells to Systems 4th edn (Brooks and Cole Publishers)
[14] Takashima S 1979 Biophys. J. 26 133
[15] Tasaki I and Matsumoto G 2002 Bull. Math. Biol. 64 1069
[16] Tuckwell H C 1979 Science 205 493
[17] Nfor N O, Serge B S and Moukam Kakmeni F M 2021 Chin. Phys. B 30 020502
[18] Etémé A S, Tabi C B, Ateba J F B, Ekobena H P F, Mohamadou A and Kofane T C 2018 J. Phys. Commun. 2 125004
[19] Tabi C B, Ondoua R Y, Fouda H P E and Kofané T C 2016 Phys. Lett. A 380 2374
[20] Mvogo A, Ndzana F II and Kofané T C 2019 Wave Motion 84 46
[21] Wang L, Wu X and Zhang H Y 2018 Phys. Lett. A 382 2650
[22] Wang L, Liu C, Wu X, Wang X and Sun W R 2018 Nonlinear Dyn. 94 977
[23] Lan Z Z and Su J J 2019 Nonlinear Dyn. 96 2535
[24] Kong L Q, Wang L, Wang D S, Dai C Q, Wen X Y and Xu L 2019 Nonlinear Dyn. 98 691
[25] Toda M 1967 J. Phys. Soc. Jpn. 23 501
[26] Hirota R and Suzuki K 1970 J. Phys. Soc. Jpn. 28 1366
[27] Hirota R and Suzuki K 1973 Proc. IEEE 61 1483
[28] Pandey S N, Bindu P S, Senthilvelan M and Lakshmanan M 2009 J. Math. Phys. 50 102701
[29] Banerjee D and Bhattacharjee J K 2010 J. Phys. A: Math. Theor. 43 062001
[30] Messias M and Gouveia M R A 2011 Physica D 240 1402
[31] Dauxois T and Peyrard M 2006 Physics of Solitons (New York: Cambridge University Press)
[32] Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (Berlin: Springer)
[33] Pismen L M 1999 Vortices in Nonlinear Fields (Oxford: Oxford University/Clarendon Press)
[34] Tchawoua C 2005 Ph.D. Dessertation (Université de Yaoundé I)
[35] Giannini J A and Joseph R I 1990 IEEE J. Quantum Electron. 26 2109
[36] Marquié R, Bilbault J M and Remoissenet M 1995 Physica D 87 371
[37] Kengne E, Lakhssassi A and Liu W M 2015 Phys. Rev. E 91 062915
[38] Benjamin T B and Feir J E 1967 J. Fluid Mech. 27 417
[39] Karlsson M 1995 J. Opt. Soc. Am. B 12 2071
[40] Takahashi N, Hanyu Y, Musha T, Kubo R and Matsumoto G 1990 Physica D 43 318
[41] Nozaki K and Bekki N 1984 J. Phys. Soc. Jpn. 53 1581
[42] Pereira N R and Stenflo L 1977 Phys. Fluids 20 1733
[43] Lautrup B, Appali R, Jackson A and Heimburg T 2011 Eur. Phys. J. E 34 1
[44] Houssaini K E, Ivanov A I, Bernard C and Jirsa V K 2015 Phys. Rev. E 91 010701
[45] Acker C D, Kopell N and White J A 2003 J. Comput. Neurosci. 15 71
[46] Poznanski R R, Cacha L A, Al-Wesabi Y M S, Ali J, Bahadoran M, Yupapin P P and Yunus J 2017 Sci. Rep. 7 2746
[47] Nguyen J N V, Dyke P, Luo D, Malomed B A and Hulet R G 2014 Nat. Phys. 10 918
[48] Rotermund H H, Jakubith S, Oertzen A V and Ertl G 1991 Phys. Rev. Lett. 66 3083
[49] Tasaki I 1999 Jpn. J. Physiol. 49 125
[50] Ueda T, Muratsugu M, Inoue I and Kobatake Y 1974 J. Membr. Biol. 18 177
[51] Mvogo A, Tambue A, Germain H, Ben-Bolie and Kofané T C 2016 Commun. Nonlinear Sci. Numer. Simulat. 39 396
[1] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[2] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[3] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[4] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[5] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[6] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[7] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[8] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[9] The influence of collision energy on magnetically tuned 6Li-6Li Feshbach resonance
Rong Zhang(张蓉), Yong-Chang Han(韩永昌), Shu-Lin Cong(丛书林), and Maksim B Shundalau. Chin. Phys. B, 2022, 31(6): 063402.
[10] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[11] Electron excitation processes in low energy collisions of hydrogen-helium atoms
Kun Wang(王堃), Chuan Dong(董川), Yi-Zhi Qu(屈一至), Ling Liu(刘玲), Yong Wu(吴勇),Xu-Hai Hong(洪许海), and Robert J. Buenker. Chin. Phys. B, 2022, 31(12): 123401.
[12] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[13] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[14] X-ray emission for Ar11+ ions impacting on various targets in the collisions near the Bohr velocity
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红), Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Chang-Hui Liang(梁昌慧), Yao-Zong Li(李耀宗), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2021, 30(8): 083201.
[15] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
No Suggested Reading articles found!