Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 120504    DOI: 10.1088/1674-1056/26/12/120504
GENERAL Prev   Next  

A novel image encryption scheme based on Kepler's third law and random Hadamard transform

Yu-Ling Luo(罗玉玲)1, Rong-Long Zhou(周戎龙)1, Jun-Xiu Liu(刘俊秀)1, Sen-Hui Qiu(丘森辉)1,2, Yi Cao(曹弋)3
1. Guangxi Key Laboratory of Multi-Source Information Mining and Security, Faculty of Electronic Engineering, Guangxi Normal University, Guilin 541004, China;
2. Guangxi Experiment Center of Information Science, Guilin 541004, China;
3. Department of Business Transformation and Sustainable Enterprise, Surrey Business School, University of Surrey, Surrey, GU2 7XH, United Kingdom
Abstract  In this paper, a novel image encryption scheme based on Kepler's third law and random Hadamard transform is proposed to ensure the security of a digital image. First, a set of Kepler periodic sequences is generated to permutate image data, which is characteristic of the plain-image and the Kepler's third law. Then, a random Hadamard matrix is constructed by combining the standard Hadamard matrix with the hyper-Chen chaotic system, which is used to further scramble the image coefficients when the image is transformed through random Hadamard transform. In the end, the permuted image presents interweaving diffusion based on two special matrices, which are constructed by Kepler periodic sequence and chaos system. The experimental results and performance analysis show that the proposed encrypted scheme is highly sensitive to the plain-image and external keys, and has a high security and speed, which are very suitable for secure real-time communication of image data.
Keywords:  Kepler's third law      random Hadamard transform      interweaving diffusion      security  
Received:  23 July 2017      Revised:  26 August 2017      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Vx (Communication using chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61661008 and 61603104), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2015GXNSFBA139256 and 2016GXNSFCA380017), the Funding of Overseas 100 Talents Program of Guangxi Provincial Higher Education, China, the Research Project of Guangxi University of China (Grant No. KY2016YB059), the Guangxi Key Laboratory of Multi-source Information Mining & Security, China (Grant No. MIMS15-07), the Doctoral Research Foundation of Guangxi Normal University, the Guangxi Provincial Experiment Center of Information Science, and the Innovation Project of Guangxi Graduate Education (Grant No. YCSZ2017055).
Corresponding Authors:  Jun-Xiu Liu     E-mail:  liujunxiu@mailbox.gxnu.edu.cn

Cite this article: 

Yu-Ling Luo(罗玉玲), Rong-Long Zhou(周戎龙), Jun-Xiu Liu(刘俊秀), Sen-Hui Qiu(丘森辉), Yi Cao(曹弋) A novel image encryption scheme based on Kepler's third law and random Hadamard transform 2017 Chin. Phys. B 26 120504

[1] Luo Y and Du M 2013 Chin. Phys. B 22 080503
[2] Luo Y, Du M and Liu J 2015 Commun. Nonlinear Sci. Numer. Simul. 20 447
[3] Hu T, Liu Y, Gong L H and Ouyang C J 2017 Nonlinear Dyn. 87 51
[4] El Assad S and Farajallah M 2016 Image Commun. 41 144
[5] Chai X, Yang K and Gan Z 2017 Tools Appl. 76 9907
[6] Chua L O 1971 Circuit Theory 18 507
[7] Chen G and Dong X 1993 Int. J. Bifur. Chaos 3 1363
[8] Matthews R 1989 Cryptologia 13 29
[9] Lang J 2015 Opt. Commun. 338 181
[10] Chen J, Zhu Z, Fu C, Yu H and Zhang L 2015 Commun. Nonlinear Sci. Numer. Simul. 20 846
[11] Kalpana J and Murali P 2015 Optik . 126 5703
[12] Wang X and Xu D 2015 Nonlinear Dyn. 79 2449
[13] Chai X, Gan Z, Chen Y and Zhang Y 2017 Signal Processing 134 35
[14] Zhou N, Pan S, Cheng S and Zhou Z 2016 Opt. Laser Technol. 82 121
[15] Wang X, Zhang Y and Bao X 2015 Opt. Lasers Eng. 73 53
[16] Wu X, Wang D, Kurths J and Kan H 2016 Inf. Sci. 349 137
[17] Wang X, Liu C, Xu D and Liu C 2016 Nonlinear Dyn. 84 1417
[18] Ye G D, Huang X L, Zhang L Y and Wang Z X 2017 Chin. Phys. B 26 10501
[19] Chai X, Gan Z, Yuan K, Lu Y and Chen Y 2017 Chin. Phys. B 26 020504
[20] Wang X, Yang L and Liu R 2010 Nonlinear Dyn. 62 615
[21] Shannon C E 1949 Bell Syst. Technol. J. 28 656
[22] Chen J, Zhu Z, Fu C, Zhang L and Zhang Y 2015 Nonlinear Dyn. 81 1151
[23] Hu G, Xiao D, Wang Y and Li X 2017 Nonlinear Dyn. 88 1305
[24] Wang X, Zhao J and Liu H 2012 Opt. Commun. 285 562
[25] Özkaynak F and Özer A B 2016 Opt.-Int. J. Light Electron Opt. 127 5190
[26] Zhou G, Zhang D, Liu Y, Yuan Y and Liu Q 2015 Neurocomputing 169 150
[27] Chen L, Ma B, Zhao X and Wang S 2017 Nonlinear Dyn. 87 1797
[28] Zhen P, Zhao G, Min L and Jin X 2016 Multimed. Tools Appl. 75 6303
[29] Su X, Li W and Hu H 2017 Multimed. Tools Appl. 76 14021
[30] Yaghouti Niyat A, Moattar M H and Niazi Torshiz M 2017 Opt. Lasers Eng. 90 225
[31] Liu Y, Tong X and Ma J 2016 Multimed. Tools Appl. 75 7739
[32] Tong X, Zhang M, Wang Z and Ma J 2016 Nonlinear Dyn. 84 2333
[33] Zhou T and Tang Y 2003 Int. J. Bifur. Chaos 13 2561
[34] Tan R, Lei T, Zhao Q, Gong L and Zhou Z 2016 Int. J. Theor. Phys. 55 5368
[35] Özkaynak F and Yavuz S 2014 Nonlinear Dyn. 78 1311
[36] Gao T, Chen Z, Yuan Z and Chen G 2006 Int. J. Mod. Phys. C 17 471
[37] Dmitrašinović V and Šuvakov M 2015 Phys. Lett. A 379 1939
[38] Luo Y, Cao L, Qiu S, Lin H, Harkin J and Liu J 2016 Nonlinear Dyn. 83 2293
[39] Dong C 2014 Signal Process. Image Commun. 29 628
[40] Pisarchik A N, Flores-Carmona N J and Carpio-Valadez M 2006 Chaos. 16 033118
[41] Zhang Y, Xu B and Zhou N 2017 Opt. Commun. 392 223
[42] Mirzaei O, Yaghoobi M and Irani H 2012 Nonlinear Dyn. 67 557
[43] Zhang Y and Wang X 2014 Inf. Sci. 273 329
[44] Zhu Z, Zhang W, Wong K and Yu H 2011 Inf. Sci. 181 1171
[45] Wang X, Teng L and Qin X 2012 Signal Processing 92 1101
[46] Liu H and Wang X 2011 Opt. Commun. 284 3895
[47] Zhang X, Fan X, Wang J and Zhao Z 2016 Tools Appl. 75 1745
[48] Li C, Luo G, Qin K and Li C 2017 Nonlinear Dyn. 87 127
[49] Liu H and Wang X 2010 Comput. Math. with Appl. 59 3320
[50] Liu H, Wang X and Kadir A 2012 Appl. Soft Comput. J. 12 1457
[51] Wang X, Liu L and Zhang Y 2015 Opt. Lasers Eng. 26 10
[52] Wang X, Gu S and Zhang Y 2015 Opt. Lasers Eng. 68 126
[53] Zhang Y and Wang X 2015 Appl. Soft Comput. J. 26 10
[54] Wang X and Luan D 2013 Nonlinear Sci. Numer. Simul. 18 3075
[1] Experimental study on age and gender differences in microscopic movement characteristics of students
Jiayue Wang(王嘉悦), Maik Boltes, Armin Seyfried, Antoine Tordeux, Jun Zhang(张俊), and Wenguo Weng(翁文国). Chin. Phys. B, 2021, 30(9): 098902.
[2] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[3] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[4] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[5] Relating Maxwell's demon and quantitative analysis of information leakage for practical imperative programs
Kushal Anjaria, Arun Mishra. Chin. Phys. B, 2017, 26(10): 100507.
[6] A self-cited pixel summation based image encryption algorithm
Guo-Dong Ye(叶国栋), Xiao-Ling Huang(黄小玲), Leo Yu Zhang(张愉), Zheng-Xia Wang(王政霞). Chin. Phys. B, 2017, 26(1): 010501.
[7] Intercept-resend attack on six-state quantum key distribution over collective-rotation noise channels
Kevin Garapo, Mhlambululi Mafu, Francesco Petruccione. Chin. Phys. B, 2016, 25(7): 070303.
[8] Improving the secrecy rate by turning foes to allies: An auction scheme
Ma Ya-Yan (马亚燕), Wang Bao-Yun (王保云). Chin. Phys. B, 2015, 24(9): 090209.
[9] An efficient three-party password-based key agreement protocol using extended chaotic maps
Shu Jian (舒剑). Chin. Phys. B, 2015, 24(6): 060509.
[10] An encryption scheme based on phase-shifting digital holography and amplitude-phase disturbance
Hua Li-Li (花丽丽), Xu Ning (徐宁), Yang Geng (杨庚). Chin. Phys. B, 2014, 23(6): 064201.
[11] Security of biased BB84 quantum key distribution with finite resource
Zhao Liang-Yuan (赵良圆), Li Hong-Wei (李宏伟), Yin Zhen-Qiang (银振强), Chen Wei (陈巍), You Juan (尤娟), Han Zheng-Fu (韩正甫). Chin. Phys. B, 2014, 23(10): 100304.
[12] A secure key agreement protocol based on chaotic maps
Wang Xing-Yuan (王兴元), Luan Da-Peng (栾大朋). Chin. Phys. B, 2013, 22(11): 110503.
[13] Improving the security of secure deterministic communication scheme based on quantum remote state preparation
Qin Su-Juan(秦素娟) and Wen Qiao-Yan(温巧燕). Chin. Phys. B, 2010, 19(2): 020310.
[14] Enhancing the security of quantum secret sharing against multiphoton attack
Zhang Bin-Bin(张彬彬), Wang Da-Qing(王大庆), Huang Shan-Shan(黄珊珊), and Liu Yu(刘玉). Chin. Phys. B, 2009, 18(6): 2149-2153.
[15] Application of periodic orbit theory in chaos-based security analysis
Long Min(龙敏) and Qiu Shui-Sheng(丘水生). Chin. Phys. B, 2007, 16(8): 2254-2258.
No Suggested Reading articles found!