Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 120301    DOI: 10.1088/1674-1056/26/12/120301
GENERAL Prev   Next  

Analytical and numerical investigations of displaced thermal state evolutions in a laser process

Chuan-Xun Du(杜传勋)1, Xiang-Guo Meng(孟祥国)2, Ran Zhang(张冉)1, Ji-Suo Wang(王继锁)1,2
1. Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, College of Physics and Engineering, Qufu Normal University, Qufu 273165, China;
2. School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China
Abstract  We investigate how displaced thermal states (DTSs) evolve in a laser channel. Remarkably, the initial DTS, an example of a mixed state, still remains mixed and thermal. At long times, they finally decay to a highly classical thermal field only related to the laser parameters κ and g. The normal ordering product of density operator of the DTS in the laser channel leads to obtaining the analytical time-evolution expressions of the photon number, Wigner function, and von Neumann entropy. Also, some interesting results are presented via numerically investigating these explicit time-dependent expressions.
Keywords:  displaced thermal state      laser process      infinitive operator-sum representation      photon number      Wigner function      von Neumann entropy  
Received:  20 June 2017      Revised:  13 August 2017      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Wj (State reconstruction, quantum tomography)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11347026) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016AM03 and ZR2017AM011).
Corresponding Authors:  Ji-Suo Wang     E-mail:  jswang@qfnu.edu.cn

Cite this article: 

Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁) Analytical and numerical investigations of displaced thermal state evolutions in a laser process 2017 Chin. Phys. B 26 120301

[1] Jeong H and Ralph T C 2006 Phys. Rev. Lett. 97 100401
[2] Jeong H, Paternostro M and Ralph T C 2009 Phys. Rev. Lett. 102 060403
[3] Jeong H and Ralph T C 2007 Phys. Rev. A 76 042103
[4] Meng X G, Wang J S, Fan H Y and Xia C W 2016 Chin. Phys. B 25 040302
[5] Meng X G, Wang J S and Gao H C 2016 Int. J. Theor. Phys. 55 3630
[6] Gardner C W and Zoller P 2000 Quantum Noise (Berlin:Springer-Verlag)
[7] Fan H Y and Lu H L 2008 Mod. Phys. Lett. B 25 2435
[8] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[9] Glauber R J 1963 Phys. Rev. 130 2529
[10] Wünsche A 1999 J. Opt. B:Quantum Semiclassical Opt. 1 R11
[11] Wang J S, Fan H Y and Meng X G 2012 Chin. Phys. B 21 064204
[12] Wang J S, Meng X G and Liang B L 2010 Chin. Phys. B 19 014207
[13] Chen J H and Fan H Y 2012 Ann. Phys. 334 272
[1] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[2] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[3] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[4] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[5] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[6] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[7] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[8] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[9] Estimation of photon counting statistics with imperfect detectors
Xiao-Chuan Han(韩晓川), Dong-Wei Zhuang(庄东炜), Yu-Xuan Li(李雨轩), Jun-Feng Song(宋俊峰), Yong-Sheng Zhang(张永生). Chin. Phys. B, 2018, 27(7): 074208.
[10] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[11] Generalized model for laser-induced surface structure in metallic glass
Lin-Mao Ye(叶林茂), Zhen-Wei Wu(武振伟), Kai-Xin Liu(刘凯欣), Xiu-Zhang Tang(汤秀章), Xiang-Ming Xiong (熊向明). Chin. Phys. B, 2016, 25(6): 068104.
[12] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[13] Explicit solution of diffusion master equation under the action of linear resonance force via the thermal entangled state representation
Yao Fei (姚飞), Wang Ji-Suo (王继锁), Xu Tian-Niu (徐天牛). Chin. Phys. B, 2015, 24(7): 070304.
[14] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[15] Thermal vacuum state corresponding to squeezed chaotic light and its application
Wan Zhi-Long (万志龙), Fan Hong-Yi (范洪义), Wang Zhen (王震). Chin. Phys. B, 2015, 24(12): 120301.
No Suggested Reading articles found!