Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 120301    DOI: 10.1088/1674-1056/24/12/120301
GENERAL Prev   Next  

Thermal vacuum state corresponding to squeezed chaotic light and its application

Wan Zhi-Long (万志龙)a b, Fan Hong-Yi (范洪义)b, Wang Zhen (王震)a
a School of Mathematical and Chemical Industry, Changzhou Institute of Technology, Changzhou 213002, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Heifei 230026, China
Abstract  For the density operator (mixed state) describing squeezed chaotic light (SCL) we search for its thermal vacuum state (a pure state) in the real-fictitious space. Using the method of integration within ordered product (IWOP) of operators we find that it is a kind of one-and two-mode combinatorial squeezed state. Its application in evaluating the quantum fluctuation of photon number reveals: the stronger the squeezing is, the larger a fluctuation appears. The second-order degree of coherence of SCL is also deduced which shows that SCL is classic. The new thermal vacuum state also helps to derive the Wigner function of SCL.
Keywords:  thermal vacuum state      squeezed chaotic light      quantum fluctuation of photon number      second-order degree of coherence  
Received:  28 June 2015      Revised:  13 August 2015      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.30.-d (Quantum statistical mechanics)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175113, 11447202, and 11574295).
Corresponding Authors:  Fan Hong-Yi     E-mail:  fhym@ustc.edu.cn

Cite this article: 

Wan Zhi-Long (万志龙), Fan Hong-Yi (范洪义), Wang Zhen (王震) Thermal vacuum state corresponding to squeezed chaotic light and its application 2015 Chin. Phys. B 24 120301

[1] Fan H Y, Jiang N Q 2008 Phys. Scr. 78 045402
[2] Louisell W H 1973 Quantum Statistical Properties of Radiation (New York: Wiley)
[3] Fan H Y and Xu X F 2004 Opt. Lett. 29 1048
[4] Takahashi Y and Umezawa H 1975 Collective Phenomena 2 55
[5] Fan H Y and Liang X T 2000 Chin. Phys. Lett. 17 174
[6] Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
[7] Xu Y J, Wang C C, Wang X C and Fan H Y 2012 Int. J. Theor. Phys. 51 1062
[8] Yuan H C, Xu X X, Xu X F and Fan H Y 2011 Mod. Phys. Lett. B 25 2353
[9] Fan H Y and Fan Y 2006 Ann. Phys. 321 480
[10] Hu L Y and Fan H Y 2009 Mod. Phys. Lett. A 24 2263
[11] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 1674
[12] Xu X X, Hu L Y and Fan H Y 2011 Mod. Phys. Lett. B 25 31
[13] Fan H Y, Tang X B and Hu L Y 2010 Commun. Theor. Phys. 53 45
[14] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[15] Fan H Y 2008 Ann. Phys. 323 1502
[16] Fan H Y 2000 Mod. Phys. Lett. A 15 2297
[17] Fan H Y and Ruan T N 1983 Commun. Theor. Phys. 2 1563
[18] Glauber R J 1963 Phy. Rev. 130 2529
[19] Glauber R J 1963 Phy. Rev. 131 2766
[20] Fan H Y and Wu Z 2015 Acta Phys. Sin. 64 080303 (in Chinese)
[21] Meng X G and Xu Y J 2014 Int. J. Theor. Phys. 53 1239
[1] Atomic emission spectra and field non-classical properties
Tang Pei(汤佩) and Guo Hong(郭红). Chin. Phys. B, 2009, 18(8): 3457-3465.
No Suggested Reading articles found!