Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020502    DOI: 10.1088/1674-1056/ab6205
GENERAL Prev   Next  

Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system

Haiyun Bi(毕海云)1,3, Guoyuan Qi(齐国元)2, Jianbing Hu(胡建兵)1, Qiliang Wu(吴启亮)4
1 School of Mechanical Engineering, Tiangong University, Tianjin 300384, China;
2 Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy, Tiangong University, Tianjin 300384, China;
3 The Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education, and School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China;
4 Post-doctorate Research Station of Mechanical Engineering, School of Electrical Engineering and Automation, Tiangong University, Tianjin 300384, China
Abstract  Quantum-classical correspondence is affirmed via performing Wigner function and a classical-quantum chaotic system containing random variables. The classical-quantum system is transformed into a Kolmogorov model for force and energy analysis. Combining different forces, the system is divided into two categories: conservative and non-conservative, revealing the mechanical characteristic of the classical-quantum system. The Casimir power, an analysis tool, is employed to find the key factors governing the orbital trajectory and the energy cycle of the system. Detailed analyses using the Casimir power and an energy transformation uncover the causes of the different dynamic behaviors, especially chaos. For the corresponding classical Hamiltonian system when Planck's constant ħ→0, the supremum bound of the system is derived analytically. Difference between the classical-quantum system and the classical Hamiltonian system is displayed through trajectories and energies. Quantum-classical correspondences are further demonstrated by comparing phase portrait, kinetic, potential and Casimir energies of the two systems.
Keywords:  quantum      Wigner function      Hamiltonian system      force and energy transformation  
Received:  27 October 2019      Revised:  04 December 2019      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61873186 and 11902220), the Natural Science Foundation of Tianjin City of China (Grant No. 17JCZDJC38300), the Provincial Foundation for Excellent Young Talents of Colleges and Universities of Anhui Province of China (Grant No. GXYQ2017014), and the Anhui University Humanities and Social Sciences Research Project of China (Grant No. SK2019A0116).
Corresponding Authors:  Guoyuan Qi     E-mail:  guoyuanqisa@qq.com

Cite this article: 

Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮) Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system 2020 Chin. Phys. B 29 020502

[1] Averin D V 2000 Fortschritte der Physik 48 1055
[2] Houck A A, Türeci H E and Koch J 2012 Nat. Phys. 8 292
[3] Xia H Y, Li H S, Zhang H, Liang Y and Xin J 2019 Quantum Inf. Process. 18 229
[4] Sheng Y B and Zhou L 2013 Entropy 15 1776
[5] Zabaleta O G and Arizmendi C M 2018 Chaos 28 075506
[6] Wilkie J and Brumer P 1997 Phys. Rev. 55 43
[7] Brack M, Bhaduri R K, Law J and Murthy M V N 1993 Phys. Rew. Lett. 70 568
[8] Hou X W and Hu B 2004 Phys. Rev. A 69 042110
[9] Song L J, Wang X G, Yan D and Zong Z G 2008 Int. J. Theor. Phys. 47 2635
[10] Song L J, Yan D, Gai Y J and Wang Y B 2011 Acta. Phys. Sin. 60 073201 (in Chinese)
[11] Eckhardt B, Hose G and Pollak E 1989 Phys. Rev. A 39 3776
[12] Gong J and Brumer P 1999 Phys. Rev. E 60 1643
[13] Gong J and Brumer P 2003 Phys. Rev. A 68 062103
[14] Qi G Y, Hu J B and Wang Z 2020 Appl. Math. Model 78 350
[15] Lakshmanan M and Rajasekar S 2012 Nonlinear Dynamics-Integrability, Chaos, and Patterns (Berlin: Springer-Verlag) chap 3 p. 65
[16] Tayler J R 2005 Classical mechanics (Sausalito: University Science Books) chap 13 p. 543
[17] Shi L J and Wen Z S 2019 Chin. Phys. B 28 040201
[18] Shen J, Zhang X M, Li Q L, Wang X Y, Zhao Y J and Jia Y 2019 Chin. Phys. B 28 040503
[19] Alamodi A O A, Sun K H, Ai W, Chen C and Peng D 2019 Chin. Phys. B 28 020503
[20] Song N, Zhang W and Yao M H 2015 Nonlinear Dyn. 82 489
[21] Xiang L, Jia Y and Hu A 2016 Appl. Math. Model 40 1
[22] Wei Z C and Zhang W 2014 Int. J. Bifurc. Chaos 24 1450127
[23] Wei Z C, Zhang W and Yao M H 2015 Nonlinear Dyn. 82 1251
[24] Bi H Y, Qi G Y and Hu J B 2019 Complexity 6313925
[25] Zhang X and Wang C H 2019 IEEE Access 7 16336
[26] Zhang X, Wang C H, Yao W and Lin H R 2019 Nonlinear Dyn. 97 2159
[27] Deng Q L and Wang C H 2019 Int. J. Bifurc. Chaos 29 1950117
[28] Xu Y, Gu R, Zhang H and Li D 2012 Int. J. Bifurcat. Chaos 22 1250088
[29] Yao M H, Zhang W and Zu W J 2012 J. Sound Vib. 331 2624
[30] Wei Z C, Moroz I, Sprott J C, Wang Z and Zhang W 2017 Int. J. Bifurc. Chaos 27 1730008
[31] Zhang W, Wu Q L, Yao M H and Dowell E H 2018 Nonlinear Dynam. 94 1
[32] Wu Q L, Zhang W and Dowell E H 2018 Int. J. Non-Lin. Mech. 102 25
[33] Wu Q L and Qi G Y 2019 Phys. Lett. A 383 1555
[34] Deng Q L and Wang C H 2019 Chaos 29 093112
[35] Qi G Y 2019 Nonlinear Dynam. 95 2063
[36] El-Sayed A M A, Nour H M, Elsaid A, Matouk A E and Elsonbaty A 2016 Appl. Math. Model 40 3516
[37] Pelino V, Maimone F and Pasini A 2014 Chaos Soliton Fract. 64 67
[38] Qi G Y 2017 Appl. Math. Model 51 686
[39] Qi G Y and Hu J B 2017 Int. J. Bifurcat. Chaos 27 1750216
[40] Yang Y J and Qi G Y 2017 Chaos Soliton Fract. 108 187
[41] Qi G Y and Liang X Y 2017 Int. J. Bifurcat. Chaos 27 1750180
[42] Qi G Y and Zhang J F 2017 Chaos Soliton Fract. 99 7
[43] Liang X Y and Qi G Y 2017 Chaos Soliton Fract. 98 173
[44] Liang X Y and Qi G Y 2017 Brazil J. Phys. 47 288
[45] Yang Y J and Qi G Y 2019 Phys. Lett. A 383 318
[46] Boulet B 2006 Fundamentals of Signals and Systems (Boston: Charles River Media) chap 5 p. 188
[47] Marsden J E and Ratiu T S 2010 Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems (New York, Springer) chap 1 p. 35
[48] Shamolin M V 2010 J. Math. Sci. 165 743
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[4] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[5] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[6] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[7] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[8] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[9] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[10] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[11] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[12] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[13] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[14] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[15] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
No Suggested Reading articles found!