Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 070304    DOI: 10.1088/1674-1056/24/7/070304
GENERAL Prev   Next  

Explicit solution of diffusion master equation under the action of linear resonance force via the thermal entangled state representation

Yao Fei (姚飞), Wang Ji-Suo (王继锁), Xu Tian-Niu (徐天牛)
Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
Abstract  Using the well-behaved features of the thermal entangled state representation, we solve the diffusion master equation under the action of a linear resonance force, and then obtain the infinitive operator-sum representation of the density operator. This approach may also be effective for treating other master equations. Moreover, we find that the initial pure coherent state evolves into a mixed thermal state after passing through the diffusion process under the action of the linear resonance force.
Keywords:  diffusion process      linear resonance force      thermal state representation      infinitive operator-sum representation  
Received:  11 January 2015      Revised:  31 January 2015      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11347026, 11147009, and 11244005), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Scientific Research Project of Liaocheng, China.
Corresponding Authors:  Wang Ji-Suo     E-mail:  jswang@mail.qfnu.edu.cn

Cite this article: 

Yao Fei (姚飞), Wang Ji-Suo (王继锁), Xu Tian-Niu (徐天牛) Explicit solution of diffusion master equation under the action of linear resonance force via the thermal entangled state representation 2015 Chin. Phys. B 24 070304

[1] Louisell W H 1973 Quantum Statistical Properties of Radiation (New York: Wiley) pp. 390-404
[2] Carmichael H J 1999 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Berlin: Springer-Verlag) pp. 89-94
[3] Arnoldus H F 1996 J. Opt. Soc. Am. B 13 1099
[4] Agarwal G S and Wolf E 1970 Phys. Rev. D 2 2161
[5] Schleich W P 2001 Quantum Optics in Phase Space (Berlin: Wiley-VCH) pp. 66-98
[6] Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
[7] Fan H Y and Hu L Y 2008 Opt. Commun. 281 5571
[8] Liu T K, Shan C J, Liu J B and Fan H Y 2014 Chin. Phys. B 23 030303
[9] Fan H Y and Hu L Y 2009 Chin. Phys. B 18 1061
[10] Fan H Y and Fan Y 1998 Phys. Lett. A 246 242
[11] Fan H Y 2003 J. Opt. B: Quantum. Semiclass. Opt. 5 R147
[12] Glauber R 1963 Phys. Rev. 131 2766
[1] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[2] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[3] Identifying the temperature distribution in a parabolice quation with overspecified data using a multiquadric quasi-interpolation method
Ma Li-Min(马利敏) and Wu Zong-Min(吴宗敏). Chin. Phys. B, 2010, 19(1): 010201.
No Suggested Reading articles found!