Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 060704    DOI: 10.1088/1674-1056/28/6/060704
GENERAL Prev   Next  

Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer

Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
Abstract  

Both the negativity of Wigner function and the phase sensitivity of an SU(1,1) interferometer are investigated in this paper. In the case that the even coherent state and squeezed vacuum state are input into the interferometer, the Heisenberg limit can be approached with parity detection. At the same time, the negativity volume of Wigner function of detection mode comes entirely from the input state and varies periodically with the encoding phase. In addition, the negativity volume of Wigner function is positively correlated with the phase sensitivity of the SU(1,1) interferometer. The positive correlation may mean that the non-classicality indicated by negative Wigner function is a kind of resource that can verify some related research results of phase estimation.

Keywords:  SU(1,1) interferometer      Wigner function      phase sensitivity  
Received:  06 December 2018      Revised:  23 January 2019      Accepted manuscript online: 
PACS:  07.60.Ly (Interferometers)  
  42.50.-p (Quantum optics)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574092, 61775062, 61378012, 91121023, and 60978009), the National Basic Research Program of China (Grant No. 2013CB921804), and the Innovation Project of Graduate School of South China Normal University (Grant No. 2017LKXM088).

Corresponding Authors:  Zhi-Ming Zhang, Ya-Fei Yu     E-mail:  zhangzhiming@m.scnu.edu.cn;yuyafei@m.scnu.edu.cn

Cite this article: 

Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞) Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer 2019 Chin. Phys. B 28 060704

[1] Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W and Pirandola S 2018 Rev. Mod. Phys. 90 035006
[2] Chekhova M V, Ou Z Y 2016 Adv. Opt. Photon. 8 104
[3] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[4] Plick W N, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014
[5] Marino A M, Trejo N V C, Lett P D 2012 Phys. Rev. A 86 023844
[6] Li D, Yuan C H, Ou Z Y and Zhang W 2014 New J. Phys. 16 073020
[7] Corzo N V, Marino A M, Jones K M and Lett P D 2012 Phys. Rev. Lett. 109 043602
[8] Hu L Y, Wei C P, Huang J H and Liu C J 2014 Opt. Commun. 323 68
[9] Gong Q K, Li D, Yuan C H, Qu Z Y and Zhang W P 2017 Chin. Phys. B 26 094205
[10] Gupta P, Schmittberger B L, Anderson B E, Jones K M and Lett P D 2018 Opt. Express 26 391
[11] Wei C P, Hu X Y, Yu Y F and Zhang Z M 2016 Chin. Phys. B 25 040601
[12] Ono T and Hofmann H F 2010 Phys. Rev. A 81 033819
[13] Ou Z Y 2012 Phys. Rev. A 85 023815
[14] Liu Y, Li J, Cui L, Huo N, Assad S M, Li X and Ou Z Y 2018 Opt. Express 26 27705
[15] Ma X, You C, Adhikari S, Matekole E S, Glasser R T, Lee H, and Dowling J P 2018 Opt. Express 26 18492
[16] Li D, Gard B T, Gao Y, Yuan C H, Zhang W, Lee H and Dowling J P 2016 Phys. Rev. A 94 063840
[17] Seshadreesan K P, Anisimov P M, Lee H and Dowling J P 2011 New J. Phys. 13 083026
[18] Adhikari S, Bhusal N, You C, Lee H and Dowling J P 2018 OSA Continuum 1 438
[19] Jing J, Liu C, Zhou Z, Ou Z Y and Zhang W 2011 Appl. Phys. Lett. 99 011110
[20] Hudelist F, Kong J, Liu C, Jing J, Ou Z Y and Zhang W 2014 Nat. Commun. 5 3049
[21] Anderson B E, Gupta P, Schmittberger B L, Horrom T, Hermann-Avigliano C, Jones K M and Lett P D 2017 Optica 4 752
[22] Li T, Anderson B E, Horrom T, Schmittberger B L, Jones K M and Lett P D 2017 Opt. Express 25 21301
[23] Du W, Jia J, Chen J F, Ou Z Y and Zhang W 2018 Opt. Lett. 43 1051
[24] Wang S, Wang Y, Zhai L and Zhang L 2018 J. Opt. Soc. Am. B 35 1046
[25] Anderson B E, Schmittberger B L, Gupta P, Jones K M and Lett P D 2017 Phys. Rev. A 95 063843
[26] Tanaka T 2017 Opt. Lett. 42 1576
[27] Li D, Yuan C H, Yao Y, Jiang W, Li M and Zhang W 2018 J. Opt. Soc. Am. B 35 1080
[28] Li H M, Xu X X, Yuan H C and Wang Z 2016 Chin. Phys. B 25 104203
[29] Walschaers M, Fabre C, Parigi V and Treps N 2017 Phys. Rev. Lett. 119 183601
[30] Kenfack A, Zyczkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
[31] Honarasa G 2017 Chin. Phys. B 26 114202
[32] Banerji A, Singh R P, Bandyopadhyay A 2014 Opt. Commun. 330 85
[33] Walls D F, Milburn G J 2007 Springer Science and Business Media
[1] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[2] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[3] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[4] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[5] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[6] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[7] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[8] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[9] Phase sensitivity of two nonlinear interferometers with inputting entangled coherent states
Chao-Ping Wei(魏朝平), Xiao-Yu Hu(胡小玉), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2016, 25(4): 040601.
[10] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[11] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[12] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[13] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[14] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[15] Quantum interferometer with two-mode squeezed vacuum:Ŝz2 measurement
Zhang Yuan-Ming (张渊明), Li Xin-Wei (李昕伟), Jin Guang-Ri (金光日). Chin. Phys. B, 2013, 22(11): 114206.
No Suggested Reading articles found!