|
|
Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer |
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞) |
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China |
|
|
Abstract Both the negativity of Wigner function and the phase sensitivity of an SU(1,1) interferometer are investigated in this paper. In the case that the even coherent state and squeezed vacuum state are input into the interferometer, the Heisenberg limit can be approached with parity detection. At the same time, the negativity volume of Wigner function of detection mode comes entirely from the input state and varies periodically with the encoding phase. In addition, the negativity volume of Wigner function is positively correlated with the phase sensitivity of the SU(1,1) interferometer. The positive correlation may mean that the non-classicality indicated by negative Wigner function is a kind of resource that can verify some related research results of phase estimation.
|
Received: 06 December 2018
Revised: 23 January 2019
Accepted manuscript online:
|
PACS:
|
07.60.Ly
|
(Interferometers)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574092, 61775062, 61378012, 91121023, and 60978009), the National Basic Research Program of China (Grant No. 2013CB921804), and the Innovation Project of Graduate School of South China Normal University (Grant No. 2017LKXM088). |
Corresponding Authors:
Zhi-Ming Zhang, Ya-Fei Yu
E-mail: zhangzhiming@m.scnu.edu.cn;yuyafei@m.scnu.edu.cn
|
Cite this article:
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞) Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer 2019 Chin. Phys. B 28 060704
|
[1] |
Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W and Pirandola S 2018 Rev. Mod. Phys. 90 035006
|
[2] |
Chekhova M V, Ou Z Y 2016 Adv. Opt. Photon. 8 104
|
[3] |
Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
|
[4] |
Plick W N, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014
|
[5] |
Marino A M, Trejo N V C, Lett P D 2012 Phys. Rev. A 86 023844
|
[6] |
Li D, Yuan C H, Ou Z Y and Zhang W 2014 New J. Phys. 16 073020
|
[7] |
Corzo N V, Marino A M, Jones K M and Lett P D 2012 Phys. Rev. Lett. 109 043602
|
[8] |
Hu L Y, Wei C P, Huang J H and Liu C J 2014 Opt. Commun. 323 68
|
[9] |
Gong Q K, Li D, Yuan C H, Qu Z Y and Zhang W P 2017 Chin. Phys. B 26 094205
|
[10] |
Gupta P, Schmittberger B L, Anderson B E, Jones K M and Lett P D 2018 Opt. Express 26 391
|
[11] |
Wei C P, Hu X Y, Yu Y F and Zhang Z M 2016 Chin. Phys. B 25 040601
|
[12] |
Ono T and Hofmann H F 2010 Phys. Rev. A 81 033819
|
[13] |
Ou Z Y 2012 Phys. Rev. A 85 023815
|
[14] |
Liu Y, Li J, Cui L, Huo N, Assad S M, Li X and Ou Z Y 2018 Opt. Express 26 27705
|
[15] |
Ma X, You C, Adhikari S, Matekole E S, Glasser R T, Lee H, and Dowling J P 2018 Opt. Express 26 18492
|
[16] |
Li D, Gard B T, Gao Y, Yuan C H, Zhang W, Lee H and Dowling J P 2016 Phys. Rev. A 94 063840
|
[17] |
Seshadreesan K P, Anisimov P M, Lee H and Dowling J P 2011 New J. Phys. 13 083026
|
[18] |
Adhikari S, Bhusal N, You C, Lee H and Dowling J P 2018 OSA Continuum 1 438
|
[19] |
Jing J, Liu C, Zhou Z, Ou Z Y and Zhang W 2011 Appl. Phys. Lett. 99 011110
|
[20] |
Hudelist F, Kong J, Liu C, Jing J, Ou Z Y and Zhang W 2014 Nat. Commun. 5 3049
|
[21] |
Anderson B E, Gupta P, Schmittberger B L, Horrom T, Hermann-Avigliano C, Jones K M and Lett P D 2017 Optica 4 752
|
[22] |
Li T, Anderson B E, Horrom T, Schmittberger B L, Jones K M and Lett P D 2017 Opt. Express 25 21301
|
[23] |
Du W, Jia J, Chen J F, Ou Z Y and Zhang W 2018 Opt. Lett. 43 1051
|
[24] |
Wang S, Wang Y, Zhai L and Zhang L 2018 J. Opt. Soc. Am. B 35 1046
|
[25] |
Anderson B E, Schmittberger B L, Gupta P, Jones K M and Lett P D 2017 Phys. Rev. A 95 063843
|
[26] |
Tanaka T 2017 Opt. Lett. 42 1576
|
[27] |
Li D, Yuan C H, Yao Y, Jiang W, Li M and Zhang W 2018 J. Opt. Soc. Am. B 35 1080
|
[28] |
Li H M, Xu X X, Yuan H C and Wang Z 2016 Chin. Phys. B 25 104203
|
[29] |
Walschaers M, Fabre C, Parigi V and Treps N 2017 Phys. Rev. Lett. 119 183601
|
[30] |
Kenfack A, Zyczkowski K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 396
|
[31] |
Honarasa G 2017 Chin. Phys. B 26 114202
|
[32] |
Banerji A, Singh R P, Bandyopadhyay A 2014 Opt. Commun. 330 85
|
[33] |
Walls D F, Milburn G J 2007 Springer Science and Business Media
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|