Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 118102    DOI: 10.1088/1674-1056/26/11/118102
Special Issue: TOPICAL REVIEW — ZnO-related materials and devices
TOPICAL REVIEW—ZnO-related materials and devices Prev   Next  

One-dimensional ZnO nanostructure-based optoelectronics

Zheng Zhang(张铮)1, Zhuo Kang(康卓)1, Qingliang Liao(廖庆亮)1, Xiaomei Zhang(张晓梅)2, Yue Zhang(张跃)1,3
1. State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology NE-3, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan;
3. Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

Semiconductor nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have been demonstrated to have potential applications in energy conversion, electronics, optoelectronics, and biosensing devices. One-dimensional (1D) ZnO nanostructures, with coupled semiconducting and piezoelectric properties, have been extensively investigated and widely used to fabricate nanoscale optoelectronic devices. In this article, we review recent developments in 1D ZnO nanostructure based photodetectors and device performance enhancement by strain engineering piezoelectric polarization and interface modulation. The emphasis is on a fundamental understanding of electrical and optical phenomena, interfacial and contact behaviors, and device characteristics. Finally, the prospects of 1D ZnO nanostructure devices and new challenges are proposed.

Keywords:  one-dimensional ZnO optoelectronics      self-powered photodetector      strain engineering      Van der Waals heterostructure  
Received:  07 July 2017      Revised:  28 August 2017      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.07.Gf (Nanowires)  
  42.70.Gi (Light-sensitive materials)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: 

Project supported by the National Major Research Program of China (Grant No. 2013CB932602), the National Key Research and Development Program of China (Grant No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities, China (Grant No. B14003), the National Natural Science Foundation of China (Grant Nos. 51527802, 51232001, 51602020, 51672026, and 51372020), China Postdoctoral Science Foundation (Grant Nos. 2015M580981 and 2016T90033) Beijing Municipal Science & Technology Commission, China, the State Key Laboratory for Advanced Metals and Materials, China (Grant No. 2016Z-06), the Fundamental Research Funds for the Central Universities, China, and JST in Japan, Research and Education Consortium for Innovation of Advanced Integrated Science.

Corresponding Authors:  Yue Zhang     E-mail:  yuezhang@ustb.edu.cn

Cite this article: 

Zheng Zhang(张铮), Zhuo Kang(康卓), Qingliang Liao(廖庆亮), Xiaomei Zhang(张晓梅), Yue Zhang(张跃) One-dimensional ZnO nanostructure-based optoelectronics 2017 Chin. Phys. B 26 118102

[1] Wang Z L and Wu W 2013 National Sci. Rev. 1 62
[2] Morales A M A 1998 Science 279 208
[3] Yang P, Yan R and Fardy M 2010 Nano Lett. 10 1529
[4] Lieber C M 2011 MRS Bulletin 36 1052
[5] Aoki T, Hatanaka Y and Look D C 2000 Appl. Phys. Lett. 76 3257
[6] Ohta H, Kawamura K i, Orita M, Hirano M, Sarukura N and Hosono H 2000 Appl. Phys. Lett. 77 475
[7] Liang W and Yoffe A 1968 Phys. Rev. Lett. 20 59
[8] Service W R R F 1997 Science 276 895
[9] Ohta H, Kamiya M, Kamiya T, Hirano M and Hosono H 2003 Thin. Solid. Films 445 317
[10] Wang Z L and Song J 2006 Science 312 242
[11] Zhang Y, Yan X Q, Yang Y, Huang Y H, Liao Q L and Qi J J 2012 Adv. Mater. 24 4647
[12] Zhang Y, Yang Y, Gu Y S, Yan X Q, Liao Q L, Li P F, Zhang Z and Wang Z Z 2015 Nano Energy 14 30
[13] Zhang X M, Mai W, Zhang Y, Ding Y and Wang Z L 2009 Solid State Commun. 149 293
[14] Si H, Liao Q, Zhang Z, Li Y, Yang X, Zhang G, Kang Z and Zhang Y 2016 Nano Energy 22 223
[15] Zhang Q, Dandeneau C S, Zhou X and Cao G 2009 Adv. Mater. 21 4087
[16] Hochbaum A I and Yang P 2010 Chem. Rev. 110 527
[17] Dai Y, Zhang Y, Bai Y Q and Wang Z L 2003 Chem. Phys. Lett. 375 96
[18] Gonzalez-Valls I and Lira-Cantu M 2009 Energ. Environ. Sci. 2 19
[19] Dai Y, Zhang Y and Wang Z L 2003 Solid State Commun. 126 629
[20] Dai Y, Zhang Y, Li Q K and Nan C W 2002 Chem. Phys. Lett. 358 83
[21] Xia F, Mueller T and Lin Y M 2009 Nat. Nanotechnol. 4 839
[22] Ji L W, Peng S M, Su Y K, Young S J, Wu C Z and Cheng W B 2009 Appl. Phys. Lett. 94 203106
[23] Guo Z, Zhao D, Liu Y, Shen D, Zhang J and Li B 2008 Appl. Phys. Lett. 93 163501
[24] Huang H, Fang G, Mo X, Yuan L, Zhou H, Wang M, Xiao H and Zhao X 2009 Appl. Phys. Lett. 94 063512
[25] Lao C, Li Y, Wong C P and Wang Z L 2007 Nano Lett. 7 1323
[26] Li Y, Della Valle F, Simonnet M, Yamada I and Delaunay J J 2009 Nanotechnology 20 045501
[27] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003
[28] Wei Y, Wu W, Guo R, Yuan D, Das S and Wang Z L 2010 Nano Lett. 10 3414
[29] Li Q H, Liang Y X, Wan Q and Wang T H 2004 Appl. Phys. Lett. 85 6389
[30] Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L and Fang X 2012 Adv. Mater. 24 2305
[31] Hu L, Brewster M M, Xu X, Tang C, Gradecak S and Fang X 2013 Nano Lett. 13 1941
[32] Zheng X, Sun Y, Yan X, Chen X, Bai Z, Lin P, Shen Y, Zhao Y and Zhang Y 2014 RSC Adv. 4 18378
[33] Liu K, Sakurai M and Aono M 2010 Sensors 10 8604
[34] Zhou J, Gu Y, Hu Y, Mai W, Yeh P H, Bao G, Sood A K, Polla D L and Wang Z L 2009 Appl. Phys. Lett. 94 191103
[35] Das S N, Moon K J, Kar J P, Choi J H, Xiong J, Lee T I and Myoung J M 2010 Appl. Phys. Lett. 97 022103
[36] Cheng G, Wu X, Liu B, Li B, Zhang X and Du Z 2011 Appl. Phys. Lett. 99 203105
[37] Zhang Z, Yuan H, Gao Y, Wang J, Liu D, Shen J, Liu L, Zhou W, Xie S, Wang X, Zhu X, Zhao Y and Sun L 2007 Appl. Phys. Lett. 90 153116
[38] Sun K, Qi J, Zhang Q, Yang Y and Zhang Y 2011 Nanoscale 3 2166
[39] Wang W, Qi J, Wang Q, Huang Y, Liao Q and Zhang Y 2013 Nanoscale 5 5981
[40] Park C H, Jeong I S, Kim J H and Im S 2003 Appl. Phys. Lett. 82 3973
[41] Kim D C, Jung B O, Lee J H, Cho H K, Lee J Y and Lee J H 2011 Nanotechnology 22 265506
[42] Lin Y Y, Chen C W, Yen W C, Su W F, Ku C H and Wu J J 2008 Appl. Phys. Lett. 92 233301
[43] Gong J, Li Y and Deng Y 2010 Phys. Chem. Chem. Phys. 12 14864
[44] Bai Z, Yan X, Chen X, Cui Y, Lin P, Shen Y and Zhang Y 2013 RSC Adv. 3 17682
[45] Bie Y Q, Liao Z M, Zhang H Z, Li G R, Ye Y, Zhou Y B, Xu J, Qin Z X, Dai L and Yu D P 2011 Adv. Mater. 23 649
[46] Hatch S M, Briscoe J and Dunn S 2013 Adv. Mater. 25 867
[47] Yang Y, Guo W, Qi J, Zhao J and Zhang Y 2010 Appl. Phys. Lett. 97 223113
[48] Wu D, Jiang Y, Zhang Y, Yu Y, Zhu Z, Lan X, Li F, Wu C, Wang L and Luo L 2012 J. Mater. Chem. 22 23272
[49] Jin W, Ye Y, Gan L, Yu B, Wu P, Dai Y, Meng H, Guo X and Dai L 2012 J. Mate.r Chem. 22 2863
[50] Bai Z, Yan X, Chen X, Liu H, Shen Y and Zhang Y 2013 Curr. Appl. Phys. 13 165
[51] Bai Z, Chen X, Yan X, Zheng X, Kang Z and Zhang Y 2014 Phys. Chem. Chem. Phys. 16 9525
[52] Li X, Gao C, Duan H, Lu B, Pan X and Xie E 2012 Nano Energy 1 640
[53] Nie B, Hu J G, Luo L B, Xie C, Zeng L H, Lv P, Li F Z, Jie J S, Feng M, Wu C Y, Yu Y Q and Yu S H 2013 Small 9 2872
[54] Dang V Q, Trung T Q, Kim D I, Duy L T, Hwang B U, Lee D W, Kim B Y, Toan L D and Lee N E 2015 Small 11 3054
[55] Liu S, Liao Q, Zhang Z, Zhang X, Lu S, Zhou L, Hong M, Kang Z and Zhang Y 2017 Nano Res.
[56] Mannhart J and Schlom D G 2010 Science 327 1607
[57] Han N, Wang F, Hou J J, Xiu F, Yip S, Hui A T, Hung T and Ho J C 2012 ACS Nano 6 4428
[58] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
[59] Graetzel M, Janssen R A, Mitzi D B and Sargent E H 2012 Nature 488 304
[60] Daniels-Hafer C, Jang M, Boettcher S W, Danner R G and Lonergan M C 2002 J. Phys. Chem. B 106 1622
[61] Wadhwa P, Liu B, McCarthy M A, Wu Z and Rinzler A G 2010 Nano Lett. 10 5001
[62] Wu W, Pan C, Zhang Y, Wen X and Wang Z L 2013 Nano Today 8 619
[63] Shi J, Starr M B and Wang X D 2012 Adv. Mater. 24 4683
[64] Zhang Y, Yan X, Yang Y, Huang Y, Liao Q and Qi J 2012 Adv. Mater. 24 4647
[65] Yang Q, Guo X, Wang W H, Zhang Y, Xu S, Lien D H and Wang Z L 2010 ACS Nano 4 6285
[66] Zhang Z, Liao Q L, Yu Y H, Wang X D and Zhang Y 2014 Nano Energy 9 237
[67] Zhang F, Ding Y, Zhang Y, Zhang X and Wang Z L 2012 ACS Nano 6 9229
[68] Zhao Y G, Yan X Q, Kang Z, Lin P, Fang X F, Lei Y, Ma S W and Zhang Y 2013 Microchimica Acta 180 759
[69] Lin P, Yan X, Zhang Z, Shen Y, Zhao Y, Bai Z and Zhang Y 2013 ACS Appl. Mat. Inter. 5 3671
[70] Lin P, Yan X, Chen X, Zhang Z, Yuan H G, Li P F, Zhao Y G and Zhang Y 2014 Nano Res. 7 860
[71] Yi F, Huang Y H, Zhang Z, Zhang Q and Zhang Y 2013 Opt. Mater. 35 1532
[72] Shi J, Zhao P and Wang X 2013 Adv. Mater. 25 916
[73] Liu S, Liao Q, Lu S, Zheng Z, Zhang G and Zhang Y 2016 Adv. Funct. Mater. 28 216
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[4] Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明). Chin. Phys. B, 2022, 31(10): 108502.
[5] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[6] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[7] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[8] Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices
J A Crosse and Pilkyung Moon. Chin. Phys. B, 2021, 30(7): 077803.
[9] Observation of magnetoresistance in CrI3/graphene van der Waals heterostructures
Yu-Ting Niu(牛宇婷), Xiao Lu(鲁晓), Zhong-Tai Shi(石钟太), and Bo Peng(彭波). Chin. Phys. B, 2021, 30(11): 117506.
[10] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[11] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[12] Electrostatic gating of solid-ion-conductor on InSe flakes and InSe/h-BN heterostructures
Zhang Zhou(周璋), Liangmei Wu(吴良妹), Jiancui Chen(陈建翠), Jiajun Ma(马佳俊), Yuan Huang(黄元), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(11): 118501.
[13] Visible-to-near-infrared photodetector based on graphene-MoTe2-graphene heterostructure
Rui-Xue Hu(户瑞雪), Xin-Li Ma(马新莉), Chun-Ha An(安春华), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(11): 117802.
[14] Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van der Waals heterostructure
Xin-Wu Zhang(张心悟), Da-Wei He(何大伟), Jia-Qi He(何佳琪), Si-Qi Zhao(赵思淇), Sheng-Cai Hao(郝生财), Yong-Sheng Wang(王永生), Li-Xin Yi(衣立新). Chin. Phys. B, 2017, 26(9): 097202.
[15] A facile and efficient dry transfer technique for two-dimensional Van der Waals heterostructure
Li Xie(谢立), Luojun Du(杜罗军), Xiaobo Lu(卢晓波), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2017, 26(8): 087306.
No Suggested Reading articles found!