Special Issue:
TOPICAL REVIEW — ZnO-related materials and devices
|
TOPICAL REVIEW—ZnO-related materials and devices |
Prev
Next
|
|
|
One-dimensional ZnO nanostructure-based optoelectronics |
Zheng Zhang(张铮)1, Zhuo Kang(康卓)1, Qingliang Liao(廖庆亮)1, Xiaomei Zhang(张晓梅)2, Yue Zhang(张跃)1,3 |
1. State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology NE-3, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan;
3. Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract Semiconductor nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have been demonstrated to have potential applications in energy conversion, electronics, optoelectronics, and biosensing devices. One-dimensional (1D) ZnO nanostructures, with coupled semiconducting and piezoelectric properties, have been extensively investigated and widely used to fabricate nanoscale optoelectronic devices. In this article, we review recent developments in 1D ZnO nanostructure based photodetectors and device performance enhancement by strain engineering piezoelectric polarization and interface modulation. The emphasis is on a fundamental understanding of electrical and optical phenomena, interfacial and contact behaviors, and device characteristics. Finally, the prospects of 1D ZnO nanostructure devices and new challenges are proposed.
|
Received: 07 July 2017
Revised: 28 August 2017
Accepted manuscript online:
|
PACS:
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
81.07.Gf
|
(Nanowires)
|
|
42.70.Gi
|
(Light-sensitive materials)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
Fund: Project supported by the National Major Research Program of China (Grant No. 2013CB932602), the National Key Research and Development Program of China (Grant No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities, China (Grant No. B14003), the National Natural Science Foundation of China (Grant Nos. 51527802, 51232001, 51602020, 51672026, and 51372020), China Postdoctoral Science Foundation (Grant Nos. 2015M580981 and 2016T90033) Beijing Municipal Science & Technology Commission, China, the State Key Laboratory for Advanced Metals and Materials, China (Grant No. 2016Z-06), the Fundamental Research Funds for the Central Universities, China, and JST in Japan, Research and Education Consortium for Innovation of Advanced Integrated Science. |
Corresponding Authors:
Yue Zhang
E-mail: yuezhang@ustb.edu.cn
|
Cite this article:
Zheng Zhang(张铮), Zhuo Kang(康卓), Qingliang Liao(廖庆亮), Xiaomei Zhang(张晓梅), Yue Zhang(张跃) One-dimensional ZnO nanostructure-based optoelectronics 2017 Chin. Phys. B 26 118102
|
[1] |
Wang Z L and Wu W 2013 National Sci. Rev. 1 62
|
[2] |
Morales A M A 1998 Science 279 208
|
[3] |
Yang P, Yan R and Fardy M 2010 Nano Lett. 10 1529
|
[4] |
Lieber C M 2011 MRS Bulletin 36 1052
|
[5] |
Aoki T, Hatanaka Y and Look D C 2000 Appl. Phys. Lett. 76 3257
|
[6] |
Ohta H, Kawamura K i, Orita M, Hirano M, Sarukura N and Hosono H 2000 Appl. Phys. Lett. 77 475
|
[7] |
Liang W and Yoffe A 1968 Phys. Rev. Lett. 20 59
|
[8] |
Service W R R F 1997 Science 276 895
|
[9] |
Ohta H, Kamiya M, Kamiya T, Hirano M and Hosono H 2003 Thin. Solid. Films 445 317
|
[10] |
Wang Z L and Song J 2006 Science 312 242
|
[11] |
Zhang Y, Yan X Q, Yang Y, Huang Y H, Liao Q L and Qi J J 2012 Adv. Mater. 24 4647
|
[12] |
Zhang Y, Yang Y, Gu Y S, Yan X Q, Liao Q L, Li P F, Zhang Z and Wang Z Z 2015 Nano Energy 14 30
|
[13] |
Zhang X M, Mai W, Zhang Y, Ding Y and Wang Z L 2009 Solid State Commun. 149 293
|
[14] |
Si H, Liao Q, Zhang Z, Li Y, Yang X, Zhang G, Kang Z and Zhang Y 2016 Nano Energy 22 223
|
[15] |
Zhang Q, Dandeneau C S, Zhou X and Cao G 2009 Adv. Mater. 21 4087
|
[16] |
Hochbaum A I and Yang P 2010 Chem. Rev. 110 527
|
[17] |
Dai Y, Zhang Y, Bai Y Q and Wang Z L 2003 Chem. Phys. Lett. 375 96
|
[18] |
Gonzalez-Valls I and Lira-Cantu M 2009 Energ. Environ. Sci. 2 19
|
[19] |
Dai Y, Zhang Y and Wang Z L 2003 Solid State Commun. 126 629
|
[20] |
Dai Y, Zhang Y, Li Q K and Nan C W 2002 Chem. Phys. Lett. 358 83
|
[21] |
Xia F, Mueller T and Lin Y M 2009 Nat. Nanotechnol. 4 839
|
[22] |
Ji L W, Peng S M, Su Y K, Young S J, Wu C Z and Cheng W B 2009 Appl. Phys. Lett. 94 203106
|
[23] |
Guo Z, Zhao D, Liu Y, Shen D, Zhang J and Li B 2008 Appl. Phys. Lett. 93 163501
|
[24] |
Huang H, Fang G, Mo X, Yuan L, Zhou H, Wang M, Xiao H and Zhao X 2009 Appl. Phys. Lett. 94 063512
|
[25] |
Lao C, Li Y, Wong C P and Wang Z L 2007 Nano Lett. 7 1323
|
[26] |
Li Y, Della Valle F, Simonnet M, Yamada I and Delaunay J J 2009 Nanotechnology 20 045501
|
[27] |
Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003
|
[28] |
Wei Y, Wu W, Guo R, Yuan D, Das S and Wang Z L 2010 Nano Lett. 10 3414
|
[29] |
Li Q H, Liang Y X, Wan Q and Wang T H 2004 Appl. Phys. Lett. 85 6389
|
[30] |
Hu L, Yan J, Liao M, Xiang H, Gong X, Zhang L and Fang X 2012 Adv. Mater. 24 2305
|
[31] |
Hu L, Brewster M M, Xu X, Tang C, Gradecak S and Fang X 2013 Nano Lett. 13 1941
|
[32] |
Zheng X, Sun Y, Yan X, Chen X, Bai Z, Lin P, Shen Y, Zhao Y and Zhang Y 2014 RSC Adv. 4 18378
|
[33] |
Liu K, Sakurai M and Aono M 2010 Sensors 10 8604
|
[34] |
Zhou J, Gu Y, Hu Y, Mai W, Yeh P H, Bao G, Sood A K, Polla D L and Wang Z L 2009 Appl. Phys. Lett. 94 191103
|
[35] |
Das S N, Moon K J, Kar J P, Choi J H, Xiong J, Lee T I and Myoung J M 2010 Appl. Phys. Lett. 97 022103
|
[36] |
Cheng G, Wu X, Liu B, Li B, Zhang X and Du Z 2011 Appl. Phys. Lett. 99 203105
|
[37] |
Zhang Z, Yuan H, Gao Y, Wang J, Liu D, Shen J, Liu L, Zhou W, Xie S, Wang X, Zhu X, Zhao Y and Sun L 2007 Appl. Phys. Lett. 90 153116
|
[38] |
Sun K, Qi J, Zhang Q, Yang Y and Zhang Y 2011 Nanoscale 3 2166
|
[39] |
Wang W, Qi J, Wang Q, Huang Y, Liao Q and Zhang Y 2013 Nanoscale 5 5981
|
[40] |
Park C H, Jeong I S, Kim J H and Im S 2003 Appl. Phys. Lett. 82 3973
|
[41] |
Kim D C, Jung B O, Lee J H, Cho H K, Lee J Y and Lee J H 2011 Nanotechnology 22 265506
|
[42] |
Lin Y Y, Chen C W, Yen W C, Su W F, Ku C H and Wu J J 2008 Appl. Phys. Lett. 92 233301
|
[43] |
Gong J, Li Y and Deng Y 2010 Phys. Chem. Chem. Phys. 12 14864
|
[44] |
Bai Z, Yan X, Chen X, Cui Y, Lin P, Shen Y and Zhang Y 2013 RSC Adv. 3 17682
|
[45] |
Bie Y Q, Liao Z M, Zhang H Z, Li G R, Ye Y, Zhou Y B, Xu J, Qin Z X, Dai L and Yu D P 2011 Adv. Mater. 23 649
|
[46] |
Hatch S M, Briscoe J and Dunn S 2013 Adv. Mater. 25 867
|
[47] |
Yang Y, Guo W, Qi J, Zhao J and Zhang Y 2010 Appl. Phys. Lett. 97 223113
|
[48] |
Wu D, Jiang Y, Zhang Y, Yu Y, Zhu Z, Lan X, Li F, Wu C, Wang L and Luo L 2012 J. Mater. Chem. 22 23272
|
[49] |
Jin W, Ye Y, Gan L, Yu B, Wu P, Dai Y, Meng H, Guo X and Dai L 2012 J. Mate.r Chem. 22 2863
|
[50] |
Bai Z, Yan X, Chen X, Liu H, Shen Y and Zhang Y 2013 Curr. Appl. Phys. 13 165
|
[51] |
Bai Z, Chen X, Yan X, Zheng X, Kang Z and Zhang Y 2014 Phys. Chem. Chem. Phys. 16 9525
|
[52] |
Li X, Gao C, Duan H, Lu B, Pan X and Xie E 2012 Nano Energy 1 640
|
[53] |
Nie B, Hu J G, Luo L B, Xie C, Zeng L H, Lv P, Li F Z, Jie J S, Feng M, Wu C Y, Yu Y Q and Yu S H 2013 Small 9 2872
|
[54] |
Dang V Q, Trung T Q, Kim D I, Duy L T, Hwang B U, Lee D W, Kim B Y, Toan L D and Lee N E 2015 Small 11 3054
|
[55] |
Liu S, Liao Q, Zhang Z, Zhang X, Lu S, Zhou L, Hong M, Kang Z and Zhang Y 2017 Nano Res.
|
[56] |
Mannhart J and Schlom D G 2010 Science 327 1607
|
[57] |
Han N, Wang F, Hou J J, Xiu F, Yip S, Hui A T, Hung T and Ho J C 2012 ACS Nano 6 4428
|
[58] |
Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
|
[59] |
Graetzel M, Janssen R A, Mitzi D B and Sargent E H 2012 Nature 488 304
|
[60] |
Daniels-Hafer C, Jang M, Boettcher S W, Danner R G and Lonergan M C 2002 J. Phys. Chem. B 106 1622
|
[61] |
Wadhwa P, Liu B, McCarthy M A, Wu Z and Rinzler A G 2010 Nano Lett. 10 5001
|
[62] |
Wu W, Pan C, Zhang Y, Wen X and Wang Z L 2013 Nano Today 8 619
|
[63] |
Shi J, Starr M B and Wang X D 2012 Adv. Mater. 24 4683
|
[64] |
Zhang Y, Yan X, Yang Y, Huang Y, Liao Q and Qi J 2012 Adv. Mater. 24 4647
|
[65] |
Yang Q, Guo X, Wang W H, Zhang Y, Xu S, Lien D H and Wang Z L 2010 ACS Nano 4 6285
|
[66] |
Zhang Z, Liao Q L, Yu Y H, Wang X D and Zhang Y 2014 Nano Energy 9 237
|
[67] |
Zhang F, Ding Y, Zhang Y, Zhang X and Wang Z L 2012 ACS Nano 6 9229
|
[68] |
Zhao Y G, Yan X Q, Kang Z, Lin P, Fang X F, Lei Y, Ma S W and Zhang Y 2013 Microchimica Acta 180 759
|
[69] |
Lin P, Yan X, Zhang Z, Shen Y, Zhao Y, Bai Z and Zhang Y 2013 ACS Appl. Mat. Inter. 5 3671
|
[70] |
Lin P, Yan X, Chen X, Zhang Z, Yuan H G, Li P F, Zhao Y G and Zhang Y 2014 Nano Res. 7 860
|
[71] |
Yi F, Huang Y H, Zhang Z, Zhang Q and Zhang Y 2013 Opt. Mater. 35 1532
|
[72] |
Shi J, Zhao P and Wang X 2013 Adv. Mater. 25 916
|
[73] |
Liu S, Liao Q, Lu S, Zheng Z, Zhang G and Zhang Y 2016 Adv. Funct. Mater. 28 216
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|