Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 118103    DOI: 10.1088/1674-1056/26/11/118103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An easy way to controllably synthesize one-dimensional SmB6 topological insulator nanostructures and exploration of their field emission applications

Xun Yang(杨汛), Hai-Bo Gan(甘海波), Yan Tian(田颜), Ning-Sheng Xu(许宁生), Shao-Zhi Deng(邓少芝), Jun Chen(陈军), Huanjun Chen(陈焕君), Shi-Dong Liang(梁世东), Fei Liu(刘飞)
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
Abstract  

A convenient fabrication technique for samarium hexaboride (SmB6) nanostructures (nanowires and nanopencils) is developed, combining magnetron-sputtering and chemical vapor deposition. Both nanostructures are proven to be single crystals with cubic structure, and they both grow along the[001] direction. Formation of both nanostructures is attributed to the vapor-liquid-solid (VLS) mechanism, and the content of boron vapor is proposed to be the reason for their different morphologies at various evaporation distances. Field emission (FE) measurements show that the maximum current density of both the as-grown nanowires and nanopencils can be several hundred μA/cm2, and their FN plots deviate only slightly from a straight line. Moreover, we prefer the generalized Schottky-Nordheim (SN) model to comprehend the difference in FE properties between the nanowires and nanopencils. The results reveal that the nonlinearity of FN plots is attributable to the effect of image potential on the FE process, which is almost independent of the morphology of the nanostructures. All the research results suggest that the SmB6 nanostructures would have a more promising future in the FE area if their surface oxide layer was eliminated in advance.

Keywords:  one-dimensional SmB6 nanostructures      chemical vapor deposition (CVD)      field emission (FE)      image potential  
Received:  07 August 2017      Revised:  16 August 2017      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  79.70.+q (Field emission, ionization, evaporation, and desorption)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933601), National Project for the Development of Key Scientific Apparatus of China (Grant No. 2013YQ12034506), the Fundamental Research Funds for the Central Universities of China, the Science and Technology Department of Guangdong Province, China, the Education Department of Guangdong Province, China, and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313313).

Corresponding Authors:  Fei Liu     E-mail:  liufei@mail.sysu.edu.cn

Cite this article: 

Xun Yang(杨汛), Hai-Bo Gan(甘海波), Yan Tian(田颜), Ning-Sheng Xu(许宁生), Shao-Zhi Deng(邓少芝), Jun Chen(陈军), Huanjun Chen(陈焕君), Shi-Dong Liang(梁世东), Fei Liu(刘飞) An easy way to controllably synthesize one-dimensional SmB6 topological insulator nanostructures and exploration of their field emission applications 2017 Chin. Phys. B 26 118103

[1] Liu F, Su Z, Mo F, Li L, Chen Z, Liu Q, Chen J, Deng S and Xu N 2011 Nanoscale 3 610
[2] Liu F, Tian J, Bao L, Yang T, Shen C, Lai X, Xiao Z, Xie W, Deng S and Chen J 2008 Adv. Mater. 20 2609
[3] Shen Y, Xu N, Deng S, Zhang Y, Liu F and Chen J 2014 Nanoscale 6 4659
[4] Xu J, Hou G, Li H, Zhai T, Dong B, Yan H, Wang Y, Yu B, Bando Y and Golberg D 2013 NPG Asia Mater. 5 e53
[5] Zhang Z, Song X, Chen Y, She J, Deng S, Xu N and Chen J 2017 J. Alloys Compd. 690 304
[6] Wu D, Cheng H, Zheng X, Wang X, Wang D and Li J 2015 Chin. Phys. Lett. 32 108102
[7] Li J, Gao Z, Xue X, Li H, Deng J, Cui B and Zou D 2016 Acta Phys. Sin. 65 118104(in Chinese)
[8] Shen Z, Chen C, Wang R, Wang B and Yan H 2016 Acta Phys. Sin. 65 236803(in Chinese)
[9] Hatnean M C, Lees M R, Paul D M and Balakrishnan G 2013 Sci. Rep. 3 3071
[10] Kim D J, Xia J and Fisk Z 2014 Nat. Mater. 13 466
[11] Lu F, Zhao J, Weng H, Fang Z and Dai X 2013 Phys. Rev. Lett. 110 096401
[12] Xu J, Zhao Y, Shi Z, Zou C and Ding Q 2008 J. Cryst. Growth. 310 3443
[13] Brewer J R, Jacobberger R M, Diercks D R and Cheung C L 2011 Chem. Mater. 23 2606
[14] Berchmans L J, Visuvasam A, Angappan S, Subramanian C and Suri A 2010 Ionics 16 833
[15] Ji X, Zhang Q, Xu J and Zhao Y 2011 Prog. Solid State Chem. 39 51
[16] Nickerson J, White R, Lee K, Bachmann R, Geballe T and Hull Jr G 1971 Phys. Rev. B 3 2030
[17] Xu J, Zhao Y, Ji X, Zhang Q and Lau S 2009 J. Phys. D:Appl. Phys. 42 135403
[18] Liu F, Gan H, Tang DM, Cao Y, Mo X, Chen J, Deng S, Xu N, Golberg D and Bando Y 2014 Small 10 685
[19] Liu F, Tang D M, Gan H, Mo X, Chen J, Deng S, Xu N, Bando Y and Golberg D 2013 ACS Nano 7 10112
[20] Wagner R and Ellis W 1964 Appl. Phys. Lett. 4 89
[21] Gan H, Peng L, Yang X, Tian Y, Xu N, Chen J, Liu F and Deng S 2017 RSC Adv. 7 24848
[22] Brewer J R, Deo N, Morris W Y and Cheung C L 2007 Chem. Mater. 19 6379
[23] Ye Z, Huang J, Xu W, Zhou J and Wang Z 2007 Solid State Commun. 141 464
[24] Ogita N, Nagai S, Udagawa M, Iga F, Sera M, Oguchi T, Akimitsu J and Kunii S 2005 Phys. B 359 941
[25] Mörke I, Dvorak V and Wachter P 1981 Solid State Commun. 40 331
[26] Ogita N, Nagai S, Okamoto N, Udagawa M, Iga F, Sera M, Akimitsu J and Kunii S 2003 Phys. Rev. B 68 224305
[27] Yang X, Gan H B, Tian Y, Peng L X, Xu N S, Chen H J, Chen J, Deng S Z, Liang S D and Liu F 2017 unpublished
[1] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[2] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[3] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[4] Image potential states mediated STM imaging of cobalt phthalocyanine on NaCl/Cu(100)
Qinmin Guo(郭秦敏), Zhihui Qin(秦志辉), Min Huang(黄敏), Vladimir N. Mantsevich , Gengyu Cao(曹更玉). Chin. Phys. B, 2016, 25(3): 036801.
[5] Controlled growth and field emission of vertically aligned AlN nanostructures with different morphologies
Liu Fei(刘飞), Su Zan-Jia(苏赞加), Liang Wei-Jie(梁炜杰), Mo Fu-Yao(莫富尧), Li Li(李力), Deng Shao-Zhi(邓少芝), Chen Jun(陈军), and Xu Ning-Sheng(许宁生). Chin. Phys. B, 2009, 18(5): 2016-2023.
[6] HIGH-YIELD PRODUCTION OF MULTI-WALLED CARBON NANOTUBES BY CATALYTIC DECOMPOSITION OF BENZENE VAPOR
Wang Xi-zhang (王喜章), Hu Zheng (胡征), Wu Qiang (吴强), Chen Yi (陈懿). Chin. Phys. B, 2001, 10(13): 76-79.
No Suggested Reading articles found!