Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 110305    DOI: 10.1088/1674-1056/26/11/110305
GENERAL Prev   Next  

Performance optimization for quantum key distribution in lossy channel using entangled photons

Yu Yang(杨玉)1, Luping Xu(许录平)1, Bo Yan(阎博)1, Hongyang Zhang(张洪阳)1, Yanghe Shen(申洋赫)2
1. School of Aerospace Science and Technology, Xidian University, Xi'an 710126, China;
2. Beijing Institute of Spacecraft System Engineering, Chinese Academy of Space Technology, Beijing 100094, China
Abstract  In quantum key distribution (QKD), the times of arrival of single photons are important for the keys extraction and time synchronization. The time-of-arrival (TOA) accuracy can affect the quantum bit error rate (QBER) and the final key rate. To achieve a higher accuracy and a better QKD performance, different from designing more complicated hardware circuits, we present a scheme that uses the mean TOA of M frequency-entangled photons to replace the TOA of a single photon. Moreover, to address the problem that the entanglement property is usually sensitive to the photon loss in practice, we further propose two schemes, which adopt partially entangled photons and grouping-entangled photons, respectively. In addition, we compare the effects of these three alternative schemes on the QKD performance and discuss the selection strategy for the optimal scheme in detail. The simulation results show that the proposed schemes can improve the QKD performance compared to the conventional single-photon scheme obviously, which demonstrate the effectiveness of the proposed schemes.
Keywords:  quantum key distribution      time of arrival      quantum bit error rate      key rate  
Received:  28 April 2017      Revised:  06 August 2017      Accepted manuscript online: 
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61573059, 61401340, and 61172138), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM6035), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB161303).
Corresponding Authors:  Luping Xu     E-mail:  xidian_lpx@163.com

Cite this article: 

Yu Yang(杨玉), Luping Xu(许录平), Bo Yan(阎博), Hongyang Zhang(张洪阳), Yanghe Shen(申洋赫) Performance optimization for quantum key distribution in lossy channel using entangled photons 2017 Chin. Phys. B 26 110305

[1] Schmitt-Manderbach T, Weier H, Fuerst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kurtsiefer C, Rarity J G, Zeilinger A and Weinfurter H 2007 Phys. Rev. Lett. 98 010504
[2] Wang J Y, Yang B, Liao S K, et al. 2013 Nat. Photon. 7 387
[3] Bourgoin J P, Higgins B L, Gigov N, Holloway C, Pugh C J, Kaiser S, Cranmer M and Jennewein T 2015 Opt. Express 23 33437
[4] Gisin N and Thew R 2007 Nat. Photon. 1 165
[5] Li C Y, Li X H, Deng F G and Zhou H Y 2008 Chin. Phys. B 17 2352
[6] Zhao J J, Guo X M, Wang X Y, Wang N, Li Y M and Peng K C 2013 Chin. Phys. Lett. 30 060302
[7] Miao E L, Han Z F, Gong S S, Zhang T, Diao D S and Guo G C 2005 New J. Phys. 7 215
[8] Tomaello A, Bonato C, Deppo V D, Naletto G and Villoresi P 2011 Adv. Space Res. 47 802
[9] Yearsley J M 2010 Phys. Rev. A 82 012116
[10] Shen Q, Liao S K, Liu S B, Wang J H, Liu W Y, Peng C Z and An Q 2013 IEEE Trans. Nucl. Sci. 60 3570
[11] Wang J C, Tian Z H, Jing J L and Fan H 2016 Phys. Rev. D 93 065008
[12] Wu Q L, Han Z F, Miao E L, Liu Y, Dai Y M and Guo G C 2007 Opt. Commun. 275 486
[13] Brida G, Degiovanni I P, Genovese M, Piacentini F, Traina P, Della-Frera A, Tosi A, Shehata A B, Scarcella C, Gulinatti A, Ghioni M, Polyakov S V, Migdall A and Giudice A 2012 Appl. Phys. Lett. 101 221112
[14] Natarajan C M, Tanner M G and Hadfield R H 2012 Supercond. Sci. Tech. 25 063001
[15] Ma H Q, Yang J H, Wei K J, Li R X and Zhu W 2014 Chin. Phys. B 23 120308
[16] Wu J Y 2010 IEEE Trans. Nucl. Sci. 57 1543
[17] Bayer E and Traxler M 2011 IEEE Trans. Nucl. Sci. 58 1547
[18] Song J, An Q and Liu S B 2006 IEEE Trans. Nucl. Sci. 53 236
[19] Wang J H, Liu S B, Shen Q, Li H and An Q 2010 IEEE Trans. Nucl. Sci. 57 446
[20] Chen X B, Yang S, Su Y and Yang Y X 2012 Phys. Scr. 86 055002
[21] Chen X B, Xu G, Su Y and Yang Y X 2014 Quantum Inf. Comput. 14 589
[22] Chen X B, Su Y, Niu X X and Yang Y X 2014 Quantum Inf. Process. 13 101
[23] Chen X B, Dou Z, Xu G, Wang C and Yang Y X 2014 Quantum Inf. Process. 13 85
[24] Xu G, Chen X B, Dou Z, Yang Y X and Li Z P 2015 Quantum Inf. Process. 14 2959
[25] Wang M M, Chen X B and Yang Y X 2013 Sci. China-Phys. Mech. Astron. 56 1636
[26] Giovannetti V, Lloyd S and Maccone L 2001 Nature 412 417
[27] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[28] Semenov A A and Vogel W 2010 Phys. Rev. A 81 023835
[29] Usenko V C, Heim B, Peuntinger C, Wittmann C, Marquardt C, Leuchs G and Filip R 2012 New J. Phys. 14 093048
[30] Bohmann M, Semenov A A, Sperling J and Vogel W 2016 Phys. Rev. A 94 010302
[31] Giovannetti V, Lloyd S and Maccone L 2002 Phys. Rev. A 65 022309
[32] Thew R T, Tanzilli S, Tittel W, Zbinden H and Gisin N 2002 Phys. Rev. A 66 062304
[33] Chen N, Quan D X, Pei C X and Yang H 2015 Chin. Phys. B 24 020304
[34] Wang X B 2005 Phys. Rev. A 72 012322
[35] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[36] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[37] Chen X Y 2015 Chin. Phys. Lett. 32 010301
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[12] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[15] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
No Suggested Reading articles found!