|
|
Anomalous boundary deformation induced by enclosed active particles |
Wen-De Tian(田文得)1,2, Yan Gu(顾燕)1, Yong-Kun Guo(郭永坤)1, Kang Chen(陈康)1,2 |
1. Center for Soft Condensed Matter Physics & Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China;
2. Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We simulate a two-dimensional model of a round soft boundary enclosed with self-propelled particles. Persistent motion drives these particles to accumulate near the boundary, thereby dramatically deforming the boundary shape through collisions. Quantitative analyses of the boundary shape and the particle distribution show that there are two typical regimes in the variation of the morphology with the increase of self-propulsion of particles. One is under small forces, characterized by the radially inhomogeneous distribution of particles and the suppression of local fluctuations of the almost round boundary, and the other is under large forces, featured by the angularly inhomogeneous distribution of particles and the global shape deformation of the boundary. These two features are strongly cooperative. We also find different mechanisms in the particle relocation at low and high particle concentrations.
|
Received: 05 April 2017
Revised: 18 May 2017
Accepted manuscript online:
|
PACS:
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
64.70.pv
|
(Colloids)
|
|
05.40.Jc
|
(Brownian motion)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21474074, 21674078, 21374073, and 21574096). |
Corresponding Authors:
Wen-De Tian, Wen-De Tian
E-mail: tianwende@suda.edu.cn;kangchen@suda.edu.cn
|
Cite this article:
Wen-De Tian(田文得), Yan Gu(顾燕), Yong-Kun Guo(郭永坤), Kang Chen(陈康) Anomalous boundary deformation induced by enclosed active particles 2017 Chin. Phys. B 26 100502
|
[1] |
Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013 Rev. Mod. Phys. 85 1143
|
[2] |
Deseigne J, Dauchot O and Chaté H 2010 Phys. Rev. Lett. 105 098001
|
[3] |
Narayan V, Ramaswamy S and Menon N 2007 Science 317 105
|
[4] |
Tailleur J and Cates M E 2008 Phys. Rev. Lett. 100 218103
|
[5] |
Cates M E 2012 Rep. Prog. Phys. 75 042601
|
[6] |
Cates M E, Marenduzzo D, Pagonabarraga I and Tailleur J 2010 Proc. Natl. Acad. Sci. 107 11715
|
[7] |
Surrey T, Nédélec F, Leibler S and Karsenti E 2001 Science 292 1167
|
[8] |
Palacci J, Sacanna S, Steinberg A P, Pine D J and Chaikin P M 2013 Science 339 936
|
[9] |
Golestanian R 2009 Phys. Rev. Lett. 102 188305
|
[10] |
Paxton W F, Kistler K C, Olmeda C C, Sen A, St. Angelo S K, Cao Y, Mallouk T E, Lammert P E and Crespi V H 2004 J. Am. Chem. Soc. 126 13424
|
[11] |
Wang W, Duan W, Ahmed S, Mallouk T E and Sen A 2013 Nano Today 8 531
|
[12] |
Yang X, Manning M L and Marchetti M C 2014 Soft Matter 10 6477
|
[13] |
Chiu Fan L 2013 New J. Phys. 15 055007
|
[14] |
Guidobaldi A, Jeyaram Y, Berdakin I, Moshchalkov V V, Condat C A, Marconi V I, Giojalas L and Silhanek A V 2014 Phys. Rev. E 89 032720
|
[15] |
Fily Y, Baskaran A and Hagan M F 2015 Phys. Rev. E 91 012125
|
[16] |
Chepizhko O and Peruani F 2013 Phys. Rev. Lett. 111 160604
|
[17] |
Locatelli E, Baldovin F, Orlandini E and Pierno M 2015 Phys. Rev. E 91 022109
|
[18] |
Fily Y, Baskaran A and Hagan M F 2014 Soft Matter 10 5609
|
[19] |
Guidobaldi H A, Jeyaram Y, Condat C A, Oviedo M, Berdakin I, Moshchalkov V V, Giojalas L C, Silhanek A V and Marconi V I 2015 Biomicrofluidics 9 024122
|
[20] |
Ezhilan B, Alonso-Matilla R and Saintillan D 2015 J. Fluid Mech. 781 R4
|
[21] |
Jens E and Gerhard G 2015 Europhys. Lett. 109 58003
|
[22] |
Angelani L, Di Leonardo R and Ruocco G 2009 Phys. Rev. Lett. 102 048104
|
[23] |
He L and Zhang H P 2013 Europhys. Lett. 102 50007
|
[24] |
Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De Angelis F and Di Fabrizio E 2010 Proc. Natl. Acad. Sci. 107 9541
|
[25] |
Sokolov A, Apodaca M M, Grzybowski B A and Aranson I S 2010 Proc. Natl. Acad. Sci. 107 969
|
[26] |
Ledesma-Aguilar R and Yeomans J M 2013 Phys. Rev. Lett. 111 138101
|
[27] |
Kaiser A and Löwen H 2014 J. Chem. Phys. 141 044903
|
[28] |
Zhu L, Lauga E and Brandt L 2013 J. Fluid Mech. 726 285
|
[29] |
Pitt W G, McBride M O, Barton A J and Sagers R D 1993 Biomaterials 14 605
|
[30] |
Weeks J D, Chandler D and Andersen H C 1971 J. Chem. Phys. 54 5237
|
[31] |
Plimpton S 1995 J. Comput.Phys. 117 1
|
[32] |
Rudnick J and Gaspari G 1986 J. Phys. A:Math. Gen. 19 L191
|
[33] |
Harder J, Valeriani C and Cacciuto A 2014 Phys. Rev. E 90 062312
|
[34] |
Spellings M, Engel M, Klotsa D, Sabrina S, Drews A M, Nguyen N, Bishop K and Glotzer S C 2015 Proc. Natl. Acad. Sci. USA (PNAS) 112 E4642
|
[35] |
Kodali V K, et al. 2007 Soft Matter 3 337
|
[36] |
Nikola N, Solon A P, Kafri Y, Kardar M, Tailleur J, and Voiturie R 2016 Phys. Rev. Lett. 117 098001
|
[37] |
Paoluzzi M, Di Leonardo R, Marchetti M C and Angelani L 2016 Sci. Rep. 6 34146
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|