|
|
Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths |
Shao-Ying Yin(尹少英)1,2, Qing-Xin Liu(刘庆欣)3, Jie Song(宋杰)1, Xue-Xin Xu(许学新)1, Ke-Ya Zhou(周可雅)1, Shu-Tian Liu(刘树田)1 |
1. Department of Physics, Harbin Institute of Technology, Harbin 150001, China; 2. Department of Physics, Harbin University, Harbin 150086, China; 3. China Mobile Group, Heilongjiang CO. Ltd., Harbin 150001, China |
|
|
Abstract We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.
|
Received: 20 March 2017
Revised: 09 June 2017
Accepted manuscript online:
|
PACS:
|
05.30.Rt
|
(Quantum phase transitions)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
75.10.Pq
|
(Spin chain models)
|
|
Fund: Project supported by National Basic Research Program of China (Grant No. 2013CBA01702) and National Natural Science Foundation of China (Grant Nos. 61377016, 61575055, 10974039, 61307072, 61308017, and 61405056). |
Corresponding Authors:
Shu-Tian Liu
E-mail: stliu@hit.edu.cn
|
Cite this article:
Shao-Ying Yin(尹少英), Qing-Xin Liu(刘庆欣), Jie Song(宋杰), Xue-Xin Xu(许学新), Ke-Ya Zhou(周可雅), Shu-Tian Liu(刘树田) Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths 2017 Chin. Phys. B 26 100501
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press) pp. 571-582
|
[2] |
Bennett C H and DiVincenzo D P 2000 Nature 404 247
|
[3] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[4] |
Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46
|
[5] |
Cao D Y, Liu B H, Wang Z, Huang Y F, Li C F and Guo G C 2015 Sci. Bull. 60 1128
|
[6] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[7] |
Dakić B, Lipp Y O, Ma X S, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner C and Walther P 2012 Nat. Phys. 8 666
|
[8] |
Sarandy M S 2009 Phys. Rev. A 80 022108
|
[9] |
Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
|
[10] |
Cucchietti F M, Fernandez-Vidal S and Paz J P 2007 Phys. Rev. A 75 032337
|
[11] |
Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 76 042118
|
[12] |
Guo J L, Mi Y J and Song H S 2012 Eur. Phys. J. D 66 24
|
[13] |
Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
|
[14] |
Luo S 2008 Phys. Rev. A 77 042303
|
[15] |
Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
|
[16] |
Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
|
[17] |
Xiao Y L, Li T, Fei S M, Jing N H, Wang Z X and Li-Jost X Q 2016 Chin. Phys. B 25 030301
|
[18] |
Cheng W W and Liu J M 2010 Phys. Rev. A 81 044304
|
[19] |
Cheng W W and Liu J M 2009 Phys. Rev. A 79 052320
|
[20] |
Soltani M R, Mahdavifar S and Mahmoudi M 2016 Chin. Phys. B 25 087501
|
[21] |
Gao M, Lei F C, Du C G and Long G L 2016 Sci. China-Phys. Mech. Astron. 59 610301
|
[22] |
Weinstein Y S 2010 Phys. Rev. A 82 032326
|
[23] |
Liu B Q, Shao B and Zou J 2010 Phys. Rev. A 82 062119
|
[24] |
Yan Y Y, Qin L G and Tian L J 2012 Chin. Phys. B 21 100304
|
[25] |
Yang Y and Wang A M 2014 Chin. Phys. B 23 020307
|
[26] |
Li Y C and Lin H Q 2016 Sci. Rep. 6 26365
|
[27] |
Ma X S, Wang A M and Cao Y 2007 Phys. Rev. B 76 155327
|
[28] |
Ma X S, Cong H S, Zhang J Y and Wang A M 2008 Eur. Phys. J. D 48 285
|
[29] |
Guo J L and Long G L 2013 Eur. Phys. J. D 67 53
|
[30] |
Cheng W W, Shan C J, Huang Y X, Liu T K and Li H 2010 Physica E 42 1544
|
[31] |
Yao Y, Xiao X, Li G and Sun C P 2015 Phys. Rev. A 92 022112
|
[32] |
Siewert J and Eltschka C 2012 Phys. Rev. Lett. 108 230502
|
[33] |
Radhakrishnan C, Parthasarathy M, Jambulingam S and Byrnes T 2016 Phys. Rev. Lett. 116 150504
|
[34] |
Siomau M and Fritzsche S 2010 Eur. Phys. J. D 60 397
|
[35] |
Li M, Fei S M and Wang Z X 2009 J. Phys. A:Math. Tehor. 42 145303
|
[36] |
Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|