Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 100503    DOI: 10.1088/1674-1056/26/10/100503
GENERAL Prev   Next  

A hybrid strategy to control uncertain nonlinear chaotic system

Yongbo Sui(隋永波)1, Yigang He(何怡刚)1, Wenxin Yu(于文新)2, Yan Li(李燕)3
1. The School of Electrical and Automation Engineering, Hefei University of Technology, Hefei 230009, China;
2. School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411105, China;
3. College of Electrical and Information Engineering, Hunan University, Changsha 430100, China
Abstract  In this paper, a new method, based on firefly algorithm (FA) and extreme learning machine (ELM), is proposed to control chaos in nonlinear system. ELM is an efficient predicted and classified tool, and can match and fit nonlinear systems efficiently. Hence, mathematical model of uncertain nonlinear system is obtained indirectly. For higher fitting accuracy, a novel swarm intelligence algorithm FA is drawn in our proposed way. The main advantage is that our proposed method can remove the limitation that mathematical model must be known clearly and can be applied to unknown nonlinear chaotic system.
Keywords:  chaos      firefly algorithm      extreme learning machine  
Received:  26 March 2017      Revised:  19 July 2017      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51577046), the State Key Program of the National Natural Science Foundation of China (Grant No. 51637004), and the National Key Research and Development Plan "Important Scientific Instruments and Equipment Development" (Grant No. 2016YFF0102200).
Corresponding Authors:  Yigang He     E-mail:  18655136887@163.com

Cite this article: 

Yongbo Sui(隋永波), Yigang He(何怡刚), Wenxin Yu(于文新), Yan Li(李燕) A hybrid strategy to control uncertain nonlinear chaotic system 2017 Chin. Phys. B 26 100503

[1] Lorenz E N 1963 J. Atmos Sci. 20 130
[2] Li C L and Zhang J 2016 Int. J. Syst. Sci. 47 2440
[3] Yin J L, Zhao L W and Tian L X 2014 Chin. Phys. B 23 020204
[4] Chen H H, Sheu G J and Lin Y L 2009 Nonlinear Anal. Theor. 70 4393
[5] Hu J, Qiu Y and Lu H 2016 Appl. Math. Model. 40 8265
[6] Li C 2012 Commun. Nonlinear Sci. 17 405
[7] Liu S and Chen L Q 2013 Chin. Phys. B 22 100506
[8] Li C, Su K and Wu L 2013 J. Comput. Nonlinear Dyn. 8 031005
[9] Liu F, Sun C X, Si-Ma W X, Liao R J and Guo F 2006 Phys. Lett. A 357 218
[10] Hsu C F, Lin C M and Yeh R G 2013 Appl. Soft Comput. 4 1620
[11] Li M B, Huang G B, Saratchandran P and Sundararajan N 2005 Neurocomputing 68 306
[12] Zhang Y, Zhang L and Li P 2016 Neurocomputing 174 286
[13] Alexandros I, Anastasios T and Ioannis P 2015 Procedia Comput. Sci. 51 2814
[14] Sharma S, Malik H and Khatri A 2015 Procedia Comput. Sci. 70 814
[15] Luo M, Li C S, Zhang X Y, Li R H and An X 2016 ISA Trans. 65 556
[16] Francisco A B, Thomas W R and Flávio M V 2017 Neurocomputing 239 238
[17] Yu W X, Sui Y B and Wang J N 2016 J. Electron. Test. 32 459
[18] Yuan X F, Zhao J J, Yang Y M and Wang Y N 2014 Appl. Soft Comput. 17 12
[19] Lei Y M and Zhang H X 2017 Chin. Phys. B 26 030502
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!