INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Highly sensitive polymer photodetectors with a wide spectral response range |
Mile Gao(高米勒), Wenbin Wang(王文斌), Lingliang Li(李凌亮), Jianli Miao(苗建利), Fujun Zhang(张福俊) |
Key Laboratory of Luminescence and Optical Information of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract A series of highly sensitive polymer photodetectors (PPDs) was fabricated with P3HT100-x:PBDT-TS1x:PC71BM1 as the active layers, where x represents the PBDT-TS1 doping weight ratio in donors. The response range of PPDs can cover from the UV to near-infrared regions by adjusting the PBDT-TS1 doping weight ratio. The best external quantum efficiency (EQE) values of ternary PPDs with P3HT:PBDT-TS1:PC71BM (50:50:1 wt/wt/wt) as the active layers reach 830%, 720%, and 330% under 390-, 625-, and 760-nm light illumination and -10 V bias, respectively. The large EQE values indicate that the photodetectors utilise photomultiplication (PM). The working mechanism of PM-type PPDs can be attributed to interfacial trap-assisted hole tunnelling injection from the external circuit under light illumination. The calculated optical field and photogenerated electron volume density in the active layers can well explain the EQE spectral shape as a function of the PBDT-TS1 doping weight ratio in donors.
|
Received: 05 August 2016
Revised: 31 October 2016
Accepted manuscript online:
|
PACS:
|
82.35.Cd
|
(Conducting polymers)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
85.60.Ha
|
(Photomultipliers; phototubes and photocathodes)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2014JBZ017) and the National Natural Science Foundation of China (Grant Nos. 61377029 and 61675017). |
Corresponding Authors:
Fujun Zhang
E-mail: fjzhang@bjtu.edu.cn
|
Cite this article:
Mile Gao(高米勒), Wenbin Wang(王文斌), Lingliang Li(李凌亮), Jianli Miao(苗建利), Fujun Zhang(张福俊) Highly sensitive polymer photodetectors with a wide spectral response range 2017 Chin. Phys. B 26 018201
|
[1] |
Yang D Z, Zhou X K, Wang Y P, Vadim A, Alshehri S M, Ahamad T and Ma D G 2016 J. Mater. Chem. C 4 2160
|
[2] |
Wang X, Li H F, Su Z S, Fang F, Zhang G, Wang J B, Chu B, Fang X, Wei Z P, Li B and Li W L 2014 Org. Electron. 15 2367
|
[3] |
Yang D, Yang S Y, Zhang L and Zou B S 2015 Acta Phys. Sin. 64 108503(in Chinese)
|
[4] |
Wang T H, Chen C B, Guo K P, Chen G, Xu T and Wei B 2016 Chin. Phys. B 25 038402
|
[5] |
Xiong S X, Tong J H, Mao L, Li Z F, Qin F, Jiang F Y, Meng W, Liu T F, Li W W and Zhou Y H 2016 J. Mater. Chem. C 4 1414
|
[6] |
Guo J C, Zuo Y H, Zhang Y, Ding W C, Cheng B W, Yu J Z and Wang Q M 2009 Chin. Phys. B 18 02223
|
[7] |
Liu C, Wang K, Gong X and Heeger A J 2016 Chem. Soc. Rev. 45 4825
|
[8] |
Su Z S, Hou F H, Wang X, Gao Y, Jin F M, Zhang G, Li Y T, Zhang L G, Chu B and Li W L 2015 ACS Appl. Mater. & Interfaces 7 2529
|
[9] |
Keivanidis P E, Ho P K H, Friend R H and Greenham N C 2010 Adv. Funct. Mater. 20 3895
|
[10] |
Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665
|
[11] |
Ramuz M, Bürgi L, Winnewisser C and Seitz P 2008 Org. Electron. 9 369
|
[12] |
Li L L, Zhang F J, Wang W B, An Q S, Wang J, Sun Q Q and Zhang M 2015 ACS Appl. Mater. & Interfaces 7 5890
|
[13] |
Li L L, Zhang F J, Wang J, An Q S, Sun Q Q, Wang W B, Zhang J and Teng F 2015 Sci. Rep. 5 9181
|
[14] |
Pan Y L, Cobler P, Rhodes S, Potter A, Chou T, Holler S, Chang R K, Pinnick R G and Wolf J P 2001 Rev. Sci. Instrum. 72 1831
|
[15] |
Hayden O, Agarwal R and Lieber C M 2006 Nat. Mater. 5 352
|
[16] |
Knupfer M 2003 Appl. Phys. A 77 623
|
[17] |
Reynaert J, Arkhipov V I, Heremans P and Poortmans J 2006 Adv. Funct. Mater. 16 784
|
[18] |
Hiramoto M, Imahigashi T and Yokoyama M 1994 Appl. Phys. Lett. 64 187
|
[19] |
Chen H Y, Lo M K F, Yang G W, Monbouquette H G and Yang Y 2008 Nat. Nanotech. 3 543
|
[20] |
Guo F W, Yang B, Yuan Y B, Xiao Z G, Dong Q F, Bi Y and Huang J S 2012 Nat. Nanotech. 7 798
|
[21] |
Wang W B, Zhang F J, Li L L, Zhang M, An Q S, Wang J and Sun Q Q 2015 J. Mater. Chem. C 3 7386
|
[22] |
Li Y, Huang H, Wang M J, Nie W Y, Huang W X, Fang G J and Carroll D L 2012 Sol. Energy Mater. Sol. C 98 273
|
[23] |
Burkhard G F, Hoke E T and McGehee M D 2010 Adv. Mater. 22 3293
|
[24] |
Armin A, Velusamy M, Wolfer P, Zhang Y L, Burn P L, Meredith P and Pivrikas A 2014 ACS Photonics 1 173
|
[25] |
Saran R, Stolojan V and Curry R J 2014 Sci. Rep. 4 934
|
[26] |
Zhang S Q, Uddin M A, Zhao W C, Ye L, Woo H Y, Liu D L, Yang B, Yao H F, Cui Y and Hou J H 2015 Polym. Chem. 6 2752
|
[27] |
Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B MW, Spiering A J H, Janssen R A J, Meijer EW, Herwig and Amp P 1999 Nature 401 685
|
[28] |
Wang W B, Zhang F J, Bai H T, Li L L, Gao M L, Zhang M and Zhan X W 2016 Nanoscale 8 5578
|
[29] |
Liu C, Wang K, Yi C, Shi X J, Du P C, Smith A W, Karim A and Gong X 2015 J. Mater. Chem. C 3 6600
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|