Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 038501    DOI: 10.1088/1674-1056/28/3/038501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Realizing photomultiplication-type organic photodetectors based on C60-doped bulk heterojunction structure at low bias

Wei Gong(龚伟), Tao An(安涛), Xinying Liu(刘欣颖), Gang Lu(卢刚)
Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract  

Photomultiplication (PM) structure has been widely employed to improve the optoelectronic performance of organic photodetectors (OPDs). However, most PM-type OPDs require a high negative operating voltage or complex fabrication. For obtaining high-efficiency OPDs with low voltage and easy process, here the bulk heterojunction (BHJ) structure of high exciton dissociation efficiency combined with the method of trap-assisted PM are applied to the OPDs. In this paper, we investigate the operating mechanism of OPDs based on poly(3-hexylthiophene) (P3HT):(phenyl-C61-butyric-acid-methyl-ester) (PC61BM), and poly-{[4,8-bis[(2-ethylhexyl)oxy]-benzo[1,2-b:4,5-b]dithiophene-2,6-diyl]-alt-[3-fluore-2-(octyloxy)carbonyl-thieno[3,4-b]thiophene-4,6-diyl]} (PBDT-TT-F):PC61BM doped with C60 as active layer. Furthermore, the influence of C60 concentration on the optoelectronic performances is also discussed. With 1.6 wt.% C60 added, the P3HT:PC61BM:C60 OPD exhibits a 327.5% external quantum efficiency, a 1.21 A·W-1 responsivity, and a 4.22×1012 Jones normalized detectivity at -1 V under 460 nm (0.21 mW·cm-2) illumination. The experimental results show that the effective electron traps can be formed by doping a small weight of C60 into BHJ active layer. Thus the PM-type OPDs can be realized, which benefits from the cathode hole tunneling injection assisted by the trapped electrons in C60 near the Al side. The efficiency of PM is related to the C60 concentration. The present study provides theoretical basis and method for the design of highly sensitive OPDs with low operating voltage and facile fabrication.

Keywords:  organic photodetector      photomultiplication      electron trap      space charge      tunneling effect  
Received:  15 September 2018      Revised:  20 November 2018      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  85.60.Ha (Photomultipliers; phototubes and photocathodes)  
  78.66.Qn (Polymers; organic compounds)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61106043), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM6267), and Program of Xi'an University of Technology, China (Grant No. 103-4515013).

Corresponding Authors:  Tao An     E-mail:  antao@xaut.edu.cn

Cite this article: 

Wei Gong(龚伟), Tao An(安涛), Xinying Liu(刘欣颖), Gang Lu(卢刚) Realizing photomultiplication-type organic photodetectors based on C60-doped bulk heterojunction structure at low bias 2019 Chin. Phys. B 28 038501

[1] Ross D, Ardalan A, Ajay K P, Paul L B and Paul M 2016 Adv. Mater. 28 4766
[2] Baierl D, Pancheri L, Schmidt M, Stoppa D, Betta G F D, Scarpa G and Lugli P 2012 Nat. Commun. 3 1175
[3] Lyons D M, Armin A, Stolterfoht M, Nagiri R, Vuuren R D, Pal B N, Burn P L, Lo S C and Meredith P 2014 Org. Electron. 15 2903
[4] Li W H, Li S B, Duan L, Chen H J, Wang L D, Dong G F and Xu Z Y 2016 Org. Electron. 37 346
[5] Du L L, Luo X, Zhao F Y, Lv W L, Zhang J P, Peng Y Q, Tang Y and Wang Y 2016 Carbon 96 685
[6] Valouch S, Hönes C, Kettlitz S W, Christ N, Do H, Klein M, Kalt H, Colsmann A and Lemmer U 2012 Org. Electron. 13 2727
[7] Xiao B, Zhang M L, Wang H B and Liu J Y 2017 Acta Phys. Sin. 66 228501 (in Chinese)
[8] Li L L, Zhang F J, Wang W B, An Q S, Wang J, Sun Q Q and Zhang M 2015 ACS Appl. Mater. & Interfaces 7 5890
[9] Shen L, Fang Y J, Wei H T, Yuan Y B and Huang J S 2016 Adv. Mater. 28 2043
[10] Nie R M, Zhao Z J and Deng X Y 2017 Synth. Met. 227 163
[11] Zhang Z Z, Fu Z L, Guo X G and Cao J C 2018 Chin. Phys. B 27 030701
[12] Gao M L, Wang W B, Li L L, Miao J L and Zhang F J 2017 Chin. Phys. B 26 018201
[13] Dong R, Bi C, Dong Q F, Guo F W, Yuan Y B, Fang Y J, Xiao Z G and Huang J S 2014 Adv. Opt. Mater. 2 549
[14] Fang Y J, Guo F W, Xiao Z G and Huang J S 2014 Adv. Opt. Mater. 2 348
[15] Li L L, Zhang F J, Wang J, An Q S, Sun Q Q, Wang W B, Zhang J and Teng F 2015 Sci. Rep. 5 9181
[16] Wang Y, Zhu L J, Hu Y F, Deng Z B, Lou Z D, Hou Y B and Teng F 2017 Opt. Express 25 7719
[17] Luo X, Lv W L, Du L L, Zhao F Y, Peng Y Q, Wang Y and Tang Y 2016 Phys. Status Solidi RRL 10 485
[18] Nie R M, Deng X Y, Feng L, Hu G G, Wang Y Y, Yu G and Xu J B 2017 Small 13 1603260
[19] Wang W B, Zhang F J, Du M D, Li L L, Zhang M, Wang K, Wang Y S, Hu B, Fang Y and Huang J S 2017 Nano Lett. 17 1995
[20] Binda M, Iacchetti A, Natali D, Beverina L, Sassi M and Sampietro M 2011 Appl. Phys. Lett. 98 073303
[21] Nismy N A, Jayawardena K I, Adikaari A D T and Silva S R P 2015 Org. Electron. 22 35
[22] Goodman A M and Rose A 1971 J. Appl. Phys. 42 2823
[23] Li A Y, Miao X R and Deng X Y 2013 Synth. Met. 168 43
[24] Gong W, Xu Z, Zhao S L, Liu X D, Yang Q Q and Fan X 2014 Acta Phys. Sin. 63 078801 (in Chinese)
[25] Kirchartz T, Gong W, Hawks S A, Agostinelli T, MacKenzie R, Yang Y and Nelson J 2012 J. Phys. Chem. C 116 7672
[26] Gao Y L 2010 Mater. Sci. Eng. R 68 39
[27] Wei G, Wang S, Renshaw K, Thompson M E and Forrest S R 2010 ACS Nano 4 1927
[28] Liu R, Xu Z, Zhao S L, Zhang F J, Gao X N, Kong C, Cao W Z and Gong W 2011 Acta Phys. Sin. 60 058801 (in Chinese)
[29] Deng L J, Zhao S L, Xu Z, Zhao L and Wang L 2016 Acta Phys. Sin. 65 078801 (in Chinese)
[30] Zafar Q, Fatima N, Karimov K S, Ahmed M M and Sulaiman K 2017 Opt. Mater. 64 131
[31] Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X and Chen H 2018 Chin. Phys. B 27 047209
[1] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[2] From microelectronics to spintronics and magnonics
Xiu-Feng Han(韩秀峰), Cai-Hua Wan(万蔡华), Hao Wu(吴昊), Chen-Yang Guo(郭晨阳), Ping Tang(唐萍), Zheng-Ren Yan(严政人), Yao-Wen Xing(邢耀文), Wen-Qing He(何文卿), and Guo-Qiang Yu(于国强). Chin. Phys. B, 2022, 31(11): 117504.
[3] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[4] High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). Chin. Phys. B, 2022, 31(1): 014202.
[5] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[6] Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector
Rongrong Guo(郭榕榕, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军). Chin. Phys. B, 2021, 30(3): 036101.
[7] Chemical structure of grain-boundary layer in SrTiO3 and its segregation-induced transition: A continuum interface approach
Hui Gu(顾辉). Chin. Phys. B, 2018, 27(6): 060503.
[8] Research on the radiation hardened SOI devices with single-step Si ion implantation
Li-Hua Dai(戴丽华), Da-Wei Bi(毕大炜), Zhi-Yuan Hu(胡志远), Xiao-Nian Liu(刘小年), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌). Chin. Phys. B, 2018, 27(4): 048503.
[9] Quantitative evaluation of space charge effects of laser-cooled three-dimensional ion system on a secular motion period scale
Li-Jun Du(杜丽军), Hong-Fang Song(宋红芳), Shao-Long Chen(陈邵龙), Yao Huang(黄垚), Xin Tong(童昕), Hua Guan(管桦), Ke-Lin Gao(高克林). Chin. Phys. B, 2018, 27(4): 043701.
[10] Schamel equation in an inhomogeneous magnetized sheared flow plasma with q-nonextensive trapped electrons
Shaukat Ali Shan, Qamar-ul-Haque. Chin. Phys. B, 2018, 27(2): 025203.
[11] Influence of characteristics' measurement sequence on total ionizing dose effect in PDSOI nMOSFET
Xin Xie(解鑫), Da-Wei Bi(毕大伟), Zhi-Yuan Hu(胡志远), Hui-Long Zhu(朱慧龙), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌). Chin. Phys. B, 2018, 27(12): 128501.
[12] Highly sensitive polymer photodetectors with a wide spectral response range
Mile Gao(高米勒), Wenbin Wang(王文斌), Lingliang Li(李凌亮), Jianli Miao(苗建利), Fujun Zhang(张福俊). Chin. Phys. B, 2017, 26(1): 018201.
[13] Distribution of electron traps in SiO2/HfO2 nMOSFET
Xiao-Hui Hou(侯晓慧), Xue-Feng Zheng(郑雪峰), Ao-Chen Wang(王奥琛), Ying-Zhe Wang(王颖哲), Hao-Yu Wen(文浩宇), Zhi-Jing Liu(刘志镜), Xiao-Wei Li(李小炜), Yin-He Wu(吴银河). Chin. Phys. B, 2016, 25(5): 057702.
[14] Plural interactions of space charge wave harmonics during the development of two-stream instability
Victor Kulish, Alexander Lysenko, Michael Rombovsky, Vitaliy Koval, Iurii Volk. Chin. Phys. B, 2015, 24(9): 095201.
[15] Energy distribution extraction of negative charges responsible for positive bias temperature instability
Ren Shang-Qing (任尚清), Yang Hong (杨红), Wang Wen-Wu (王文武), Tang Bo (唐波), Tang Zhao-Yun (唐兆云), Wang Xiao-Lei (王晓磊), Xu Hao (徐昊), Luo Wei-Chun (罗维春), Zhao Chao (赵超), Yan Jiang (闫江), Chen Da-Peng (陈大鹏), Ye Tian-Chun (叶甜春). Chin. Phys. B, 2015, 24(7): 077304.
No Suggested Reading articles found!