Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 016104    DOI: 10.1088/1674-1056/26/1/016104
Special Issue: TOPICAL REVIEW — Amorphous physics and materials
TOPICAL REVIEW—Amorphous physics and materials Prev   Next  

Five-fold local symmetry in metallic liquids and glasses

M Z Li(李茂枝)1, H L Peng(彭海龙)2, Y C Hu(胡远超)2, F X Li(李福祥)1, H P Zhang(张华平)1, W H Wang(汪卫华)2
1. Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2. Institute of Physics, Chinese Academy of Sciences, Beijing 100091, China
Abstract  

The structure of metallic glasses has been a long-standing mystery. Owing to the disordered nature of atomic structures in metallic glasses, it is a great challenge to find a simple structural description, such as periodicity for crystals, for establishing the structure-property relationship in amorphous materials. In this paper, we briefly review the recent developments of the five-fold local symmetry in metallic liquids and glasses and the understanding of the structure-property relationship based on this parameter. Experimental evidence demonstrates that five-fold local symmetry is found to be general in metallic liquids and glasses. Comprehensive molecular dynamics simulations show that the temperature evolution of five-fold local symmetry reflects the structural evolution in glass transition in cooling process, and the structure-property relationship such as relaxation dynamics, dynamic crossover phenomena, glass transition, and mechanical deformation in metallic liquids and glasses can be well understood base on the simple and general structure parameter of five-fold local symmetry.

Keywords:  metallic glass      structure-property relation      five-fold local symmetry  
Received:  13 September 2016      Revised:  10 November 2016      Accepted manuscript online: 
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  61.25.Mv (Liquid metals and alloys)  
  64.70.pe (Metallic glasses)  
  64.70.Q- (Theory and modeling of the glass transition)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51271195 and 51271197), the National Basic Research Program of China (Grant No. 2015CB856800), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grnat No. 16XNLQ01).

Corresponding Authors:  M Z Li     E-mail:  maozhili@ruc.edu.cn

Cite this article: 

M Z Li(李茂枝), H L Peng(彭海龙), Y C Hu(胡远超), F X Li(李福祥), H P Zhang(张华平), W H Wang(汪卫华) Five-fold local symmetry in metallic liquids and glasses 2017 Chin. Phys. B 26 016104

[1] Cheng Y Q and Ma E 2011 Prog. Mater. Sci. 56 379
[2] Turnbull D 1952 J. Chem. Phys. 20 411
[3] Frank F C 1952 Proc.R. Soc. Lond. A 215 43
[4] Voronoi G 1908 J. Reine Angew Math. 134 198
[5] Borodin V A 1999 Phil. Mag. A 79 1887
[6] Steinhardt P J, Nelson D R and Ronchetti M 1981 Phys. Rev. Lett. 47 1297
[7] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[8] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[9] Clarke A S and Jonsson H 1993 Phys. Rev. E 47 3975
[10] Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Nature 439 419
[11] Li M Z, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201
[12] Cicco A D, Trapananti A and Faggioni S 2003 Phys. Rev. Lett. 91 135505
[13] Saksl K, Franz H, Jovari P, Klementiev K, Welter E, Ehnes A, Saida J, Inoue A and Jiang J Z 2003 Appl. Phys. Lett. 83 3924
[14] Luo W K, Sheng H W, Alamgir F M, Bai J M, He J H and Ma E 2004 Phys. Rev. Lett. 92 145502
[15] Shen Y T, Kim T H, Gangopadhyay A K and Kelton K F 2009 Phys. Rev. Lett. 102 057801
[16] Cheng Y Q, Sheng H W and Ma E 2008 Phys. Rev. B 78 014207
[17] Wang S Y, Wang C Z, Li M Z, Huang L, Ott R T, Kramer M J, Sordelet D J and Ho K M 2008 Phys. Rev. B 78 184204
[18] Hao S G, Wang C Z, Li M Z, Napolitano R E and Ho K M 2011 Phys. Rev. B 84 064203
[19] Wang Q, Liu C T, Yang Y, Dong Y D and Lu J 2011 Phys. Rev. Lett. 106 215505
[20] Soklaski R, Nussinov Z, Markow Z, Kelton K F and Yang L 2013 Phys. Rev. B 87 184203
[21] Wu Z W, Li M Z, Wang W H and Liu K X 2013 Phys. Rev. B 88 054202
[22] Finney J L 1977 Nature 266 309
[23] Qi D W and Wang S 1991 Phys. Rev. B 44 884
[24] Sha Z D, Wu R Q, Lu Y H, Shen L, Yang M, Cai Y Q, Feng Y P and Li Y 2009 J. Appl. Phys. 105 043521
[25] Peng H L, Li M Z, Wang W H, Wang C Z and Ho K M 2010 Appl. Phys. Lett. 96 021901
[26] Huang L, Wang C Z, Hao S G, Kramer M J and Ho K M 2010 Phys. Rev. B 81 014108
[27] Senkov O N, Cheng Y Q, Miracle D B, Barney E R, Hannon A C and Woodward C F 2012 J. Appl. Phys. 111 123515
[28] Hu Y C, Li F X, Li M Z, Bai H Y and Wang W H 2015 Nat. Commun. 6 8310
[29] Spaepen F 2000 Nature 408 781
[30] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503
[31] Li M Z 2014 J. Mater. Sci. Technol. 30 551
[32] Reichert H, Klein O, Dosch H, Denk M, Honkimaki V, Lippmann T and Reiter G 2000 Nature 408 839
[33] Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R and Chen M W 2013 Science 341 376
[34] Xi X K, Li L L, Zhang B, Wang W H and Wu Y 2007 Phys. Rev. Lett. 99 095501
[35] Sandor M T, Ke H B, Wang W H and Wu Y 2013 J. Phys.:Condens. Matter 25 165701
[36] Wakeda M, Shibutani Y, Ogata S and Park J 2007 Intermetallics 15 139
[37] Cheng Y Q, Cao A J and Sheng H W 2008 Acta Mater. 56 5263
[38] Hargittai I 1999 Fivefold Symmetry (Singapore:World Scientific)
[39] Bagley B G 1965 Nature 208 674
[40] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[41] Caspar D L and Fontano E 1996 Proc. Natl. Acad. Sci. USA 93 14721
[42] Van Raaij M J, Mitraki A, Lavigne G and Cusack S 1999 Nature 401 935
[43] Royall C P, Williams S R, Ohtsuka T and Tanaka H 2008 Nat. Mater. 7 556
[44] Wochner P, Gutt C, Autenrieth T, Demmer T, Bugaev V, Ortiz A D, Duri A, Zontone, Grubel G and Dosch H 2009 Proc. Natl. Acad. Sci. USA 106 11511
[45] Li J D, Cao Y X, Xia C J, Kou B Q, Xiao X H, Fezzaa K and Wang Y J 2014 Nature Commun. 5 5014.
[46] Shintani H and Tanaka H 2008 Nat. Mater. 7 870
[47] Shintani H and Tanaka H 2006 Nat. Phys. 2 200
[48] Starr F W, Sastry S, Douglas J F and Glotzer S C 2002 Phys. Rev. Lett. 89 125501
[49] Jackle J 1986 Rep. Prog. Phys. 49 171
[50] Kob W and Andersen H C 1995 Phys. Rev. E 52 4134
[51] Angell C A 1995 Science 267 1924
[52] Gao W, Feng S D, Qi L, Zhang S L and Liu R P 2015 Chin. Phys. Lett. 32 116101
[53] Wessels V, Gangopadhyay A K, Sahu K K, Hyers R W, Canepari S M, Rogers J R, Kramer M J, Goldman A I, Robinson D, Lee J W, Morris J R and Kelton K F 2011 Phys. Rev. B 83 094116
[54] Lu I R, Wilde G, Gorler G P and Willnecker R 1999 J. Non-Cryst. Solids 250-252 577
[55] Hu Y C, Li F X, Li M Z, Bai H Y and Wang W H 2016 J. Appl. Phys. 119 205108
[56] Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L and Wu Y 2015 Nat. Commun. 6 7696
[57] Li Y, Bai H Y, Wang W H and Samwer K 2006 Phys. Rev. B 74 052201
[58] Ke H B, Wen P, Zhao D Q and Wang W H 2010 Appl. Phys. Lett. 96 251902
[59] Ding J, Cheng Y Q, Sheng H W and Ma E 2012 Phys. Rev. B 85 060201
[60] Ding J, Cheng Y Q and Ma E 2013 Acta Mater. 61 3130
[61] Trachenko K and Brazhkin V V 2011 Phys. Rev. B 83 014201
[62] Adam G and Gibbs J H 1965 J. Chem. Phys. 43 139
[63] Angell C A 1995 Science 267 1924
[64] Royall C P and Williams S R 2015 Phys. Rep. 560 1
[65] Donati C, Glotzer S C, Poole P H, Kob W and Plimpton S J 1999 Phys. Rev. E 60 3107
[66] Kawasaki T and Tanaka H 2010 Proc. Natl. Acad. Sci. USA 107 14036
[67] Heussinger C, Berthier L and Barrat J L 2010 Eruophys. Lett. 90 20005
[68] Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99
[69] Andersen H C 2005 Proc. Natl. Acad. Sci. USA 102 6686
[70] Roland C M 2008 Soft Matter 4 2316
[71] Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Chen S H and Stanley H E 2010 Proc. Natl. Acad. Sci. USA 107 22457
[72] Iwashita T, Nicholson D M and Egami T 2013 Phys. Rev. Lett. 110 205504
[73] Ngai K 2011 Relaxation and Diffusion in Complex Systems (New York:Springer)
[74] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[75] Tarjus G and Kivelson D 1995 J. Chem. Phys. 103 3071
[76] Becker S R, Poole P H and Starr F W 2006 Phys. Rev. Lett. 97 055901
[77] Xu L, Mallamace F, Yan Z, Starr F W, Buldyrev S V and Stanley H E 2009 Nat. Phys. 5 565
[78] Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Phys. Rev. Lett. 79 2827
[79] Widmer-Cooper A, Harrowell P and Fynewever H 2004 Phys. Rev. Lett. 93 135701
[80] Royall C P, Williams S R, Ohtsuka T and Tanaka H 2007 Nat. Mater. 7 556
[81] Tanaka H 2005 J. Non-Cryst. Solids 351 3385
[82] Wei S, Yang F, Bednarcik J, Kaban I, Shuleshova O, Meyer A and Busch R 2013 Nat. Commun. 4 2083
[83] Cadien A, Hu Q Y, Cheng Y Q, Chen M W, Shu J F, Mao H K and Sheng H W 2013 Phys. Rev. Lett. 110 125503
[84] Katayama Y, Mizutani T, Utsumi W, Shimomura O, Yamakata M and Funakoshi K 2000 Nature 403 170
[85] Poole P H 1997 Science 275 322
[86] Tanaka H 2012 Eur. Phys. J. E 35 113
[87] Tanaka H 2000 Europhys. Lett. 50 340
[88] Falk M L and Langer J S 1998 Phys. Rev. E 57 7192
[89] Shang B S, Li M Z, Yao Y G, Lu Y J and Wang W H 2014 Phys. Rev. E 90 042303
[90] Ding J, Cheng Y Q and Ma E 2012 Appl. Phys. Lett. 101 121917
[1] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[2] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[3] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[4] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[5] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[6] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[7] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[8] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[9] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[10] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[11] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[12] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[13] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[14] Machine learning in materials design: Algorithm and application
Zhilong Song(宋志龙), Xiwen Chen(陈曦雯), Fanbin Meng(孟繁斌), Guanjian Cheng(程观剑), Chen Wang(王陈), Zhongti Sun(孙中体), and Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(11): 116103.
[15] Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective
Shaoqin Jiang(江少钦), Yong Huang(黄勇), Maozhi Li(李茂枝). Chin. Phys. B, 2019, 28(4): 046103.
No Suggested Reading articles found!