Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 096104    DOI: 10.1088/1674-1056/25/9/096104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Monte Carlo simulation of asymmetrical growth of cube-shaped nanoparticles

Yuanyuan Wang(王元元), Huaqing Xie(谢华清), Zihua Wu(吴子华), Jiaojiao Xing(邢姣娇)
School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
Abstract  We simulated the asymmetrical growth of cube-shaped nanoparticles by applying the Monte Carlo method. The influence of the specific mechanisms on the crystal growth of nanoparticles has been phenomenologically described by efficient growth possibilities along different directions (or crystal faces). The roles of the thermodynamic and kinetic factors have been evaluated in three phenomenological models. The simulation results would benefit the understanding about the cause and manner of the asymmetrical growth of nanoparticles.
Keywords:  cube-shaped nanoparticles      asymmetrical growth      Monte Carlo simulation  
Received:  24 March 2016      Revised:  17 May 2016      Accepted manuscript online: 
PACS:  61.46.Fg (Nanotubes)  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51406111), the Major Program of the National Natural Science Foundation of China (Grant No. 51590902), the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1417000), the Scientific Innovation Project of Shanghai Education Committee, China (Grant No. 15ZZ100), and Young Eastern Scholar of Shanghai, China (Grant No. QD2015052).
Corresponding Authors:  Huaqing Xie     E-mail:  hqxie@sspu.edu.cn

Cite this article: 

Yuanyuan Wang(王元元), Huaqing Xie(谢华清), Zihua Wu(吴子华), Jiaojiao Xing(邢姣娇) Monte Carlo simulation of asymmetrical growth of cube-shaped nanoparticles 2016 Chin. Phys. B 25 096104

[1] Xia Y, Xiong Y, Lim B and Skrabalak S E 2009 Angewandte Chemie-International Edition 48 60
[2] Tao A R, Habas S and Yang P 2008 Small 4 310
[3] Kvitek O, Siegel J, Hnatowicz V and Svorcik V 2013 Journal of Nanomaterials 2013 15
[4] Xiao J and Qi L 2011 Nanoscale 3 1383
[5] Seo D, Park J C and Song H 2006 J. Am. Chem. Soc. 128 14863
[6] Murphy C J, Gole A M, Hunyadi S E and Orendorff C J 2006 Inorganic Chemistry 45 7544
[7] Chen J, Wiley B J and Xia Y 2007 Langmuir 23 4120
[8] Shen X S, Wang G Z, Hong X, Xie X, Zhu W and Li D P 2009 J. Am. Chem. Soc. 131 10812
[9] Pastoriza-Santos I and Liz-Marzan L M 2008 Journal of Materials Chemistry 18 1724
[10] Halder A and Ravishankar N 2007 Adv. Mater. 19 1854
[11] Zhang Q, Liu S J and Yu S H 2009 Journal of Materials Chemistry 19 191
[12] Porter D A and Easterling K E 1981 Phase Transformations in Metals and Alloys (New York: Chapman and Hall)
[13] Yu D and Yam V W W 2004 J. Am. Chem. Soc. 126 13200
[14] Niu W, Li Z Y, Shi L, Liu X, Li H, Han S, Chen J and Xu G 2008 Crystal Growth & Design 8 4440
[15] Lee H, Habas S E, Kweskin S, Butcher D, Somorjai G A and Yang P 2006 Angewandte Chemie 45 7824
[16] Wang C, Daimon H, Lee Y, Kim J and Sun S 2007 J. Am. Chem. Soc. 129 6974
[17] Xu D, Liu Z, Yang H, Liu Q, Zhang J, Fang J, Zou S and Sun K 2009 Angewandte Chemie-International Edition 48 4217
[18] Huang X, Zhang H, Guo C, Zhou Z and Zheng N 2009 Angewandte Chemie-International Edition 48 4808
[19] Wang S B, Min Y L and Yu S H 2007 Journal of Physical Chemistry C 111 3551
[20] Yang S and Gao L 2006 J. Am. Chem. Soc. 128 9330
[21] Sun Y, Zhang L, Zhou H, Zhu Y, Sutter E, Ji Y, Rafailovich M H and Sokolov J C 2007 Chemistry of Materials 19 2065
[22] Pérz-Juste J, Liz-Marzán L M, Carnie S, Chan D Y C and Mulvaney P 2004 Advanced Functional Materials 14 571
[23] Xiong Y, Cai H, Wiley B J, Wang J, Kim M J and Xia Y 2007 J. Am. Chem. Soc. 129 3665
[24] Viswanath B, Kundu P, HaIder A and Ravishankar N 2009 Journal of Physical Chemistry C 113 16866
[25] Kossel W 1927 Nachr. Gesellschaft Wiss Gottingen 143
[26] Stranski I 1927 Jahrb. Univ. Sofia (Phys. Math. Fac.) 2 297
[27] Stranski I Z 1928 Phys. Chem. A 136 259
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[4] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[5] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[6] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[7] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[8] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[9] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[10] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[11] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[12] Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box
Xuehui Xiao(肖学会), Kuo Bao(包括), Youchun Wang(王友春), Hui Xie(谢慧), Defang Duan(段德芳), Fubo Tian(田夫波), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056401.
[13] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[14] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[15] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
No Suggested Reading articles found!