Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 096105    DOI: 10.1088/1674-1056/25/9/096105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Stable single helical C- and I-chains inside single-walled carbon nanotubes

Z Yao(姚震)1, C J Liu(刘春见)3, Y Li(李义)1, X D Jing(敬晓丹)1, F S Meng(孟凡顺)1, S P Zheng(郑士鹏)4, X Zhao(赵星)1, J H Li(李久会)1, Z Y Qiu(邱忠媛)1, Q Yuan(袁泉)1, W X Wang(王文新)1, L Bi(毕磊)1, H Liu(刘辉)1, Y P Zhang(张玉璞)1, B B Liu(刘冰冰)2
1. College of Science, Liaoning University of Technology, Jinzhou 121001, China;
2. State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
3. College of Mathematics and Physics, Bohai University, Jinzhou 121001, China;
4. Electric Engineering College, Liaoning University of Technology, Jinzhou 121001, China
Abstract  

The helicity of stable single helical carbon chains and iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic van der Waals interaction energy. The results show that the optimal helical radius increases linearly with increasing tube radius, which produces a constant separation between the chain structure and the tube wall. The helical angle exhibits a ladder-like decrease with increasing tube radius, indicating that a large tube can produce a small helicity in the helical structures.

Keywords:  nanotube      peapod      carbon chain      iodine chain  
Received:  04 January 2016      Revised:  11 May 2016      Accepted manuscript online: 
PACS:  61.46.-w (Structure of nanoscale materials)  
  61.46.Fg (Nanotubes)  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  62.23.Hj (Nanowires)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant Nos. 11504150 and 51320105007), and the Cheung Kong Scholars Program of China.

Corresponding Authors:  Z Yao, B B Liu     E-mail:  yaozhenjlu@163.com;liubb@jlu.edu.cn

Cite this article: 

Z Yao(姚震), C J Liu(刘春见), Y Li(李义), X D Jing(敬晓丹), F S Meng(孟凡顺), S P Zheng(郑士鹏), X Zhao(赵星), J H Li(李久会), Z Y Qiu(邱忠媛), Q Yuan(袁泉), W X Wang(王文新), L Bi(毕磊), H Liu(刘辉), Y P Zhang(张玉璞), B B Liu(刘冰冰) Stable single helical C- and I-chains inside single-walled carbon nanotubes 2016 Chin. Phys. B 25 096105

[1] Iijima S 1991 Nature 354 56
[2] Pickett G T, Gross M and Okuyama H 2000 Phys. Rev. Lett. 85 3652
[3] Smith B W, Monthioux M and Luzzi D E 1998 Nature 396 323
[4] Hodak M and Girifalco L A 2003 Phys. Rev. B 67 075419
[5] Yoon M, Berber S and Tomanek D 2005 Phys. Rev. B 71 155406
[6] Hodak M and Girifalco L A 2003 Phys. Rev. B 68 085405
[7] Khlobystov A N, Britz D A and Briggs G A D 2005 Acc. Chem. Res. 38 901
[8] Khlobystov A N, Britz D A, Ardavan A and Briggs G A D 2004 Phys. Rev. Lett. 92 245507
[9] Zhou L, Pan Z Y, Wang Y X, Zhu J, Liu T J and Jiang X M 2006 Nanotechnology 17 1891
[10] Troche K S, Coluci V R, Braga S F, Chinellato D D, Sato F, Legoas S B, Rurali R and Galvao D S 2005 Nano Lett. 5 349
[11] Verberck B, Cambedouzou J, Vliegenthart G A, Gompper G and Launois P 2011 Carbon 49 2007
[12] Verberck B and Tarakina N V 2011 Eur. Phys. J. B 80 355
[13] Wang J W, Kuimova M K, Poliakoff M, Briggs G A D and Khlobystov A N 2006 Angew. Chem. Int. Ed. 45 5188
[14] Legoas S B, Santos R P B D, Troche K S, Coluci V R and Galvao D S 2011 Nanotechnology 22 315708
[15] Sloan J, Wright D M, Woo H G, Bailey S, Brown G, York A P E, Coleman K S, Hutchison J L and Green M L H 1999 Chem. Commun. 699
[16] Agrawal B K, Agrawal S and Singh S 2005 J. Phys.: Condens. Matter 17 2085
[17] Svrcek V 2008 Mater. Lett. 62 2578
[18] Ivanovskaya V V, Kohler C and Seifert G 2007 Phys. Rev. B 75 075410
[19] Sloan J, Grosvenor S J, Friedrichs S, Kirkland A I, Hutchison J L and Green M L H 2002 Angew. Chem. Int. Ed. 41 1156
[20] Meyer R R, Sloan J, Dunin-Borkowski R E, Kirkland A I, Novotny M C, Bailey S R, Hutchison J L and Green M L H 2000 Science 289 1324
[21] Koga K, Gao G T, Tanaka H and Zeng X C 2001 Nature 412 802
[22] Sloan J, Novotny M C, Bailey S R, Brown G, Xu C, Williams V C, Friedrichs S, Flahaut E, Callender R L, York A P E, Coleman K S, Green M L H, Dunin-Borkowskim R E and Hutchison J L 2000 Chem. Phys. Lett. 329 61
[23] Sloan J, Terrones M, Nufer S, Friedrichs S, Bailey S R, Woo H G, Ruhle M, Hutchison J L and Green M L H 2002 J. Am. Chem. Soc. 124 2116
[24] Xu C, Sloan J, Brown G, Bailey S, Williams V C, Friedrichs S, Coleman K S, Flahaut E, Hutchison J L, Dunin-Borkowski R E and Green M L H 2000 Chem. Commun. 2427
[25] Zhao X L, Ando Y, Liu Y, Jinno M and Suzuki T 2003 Phys. Rev. Lett. 90 187401
[26] Liu Y and Jones R O 2003 Phys. Rev. B 68 125413
[27] Nishide D, Dohi H, Wakabayashi T, Nishibori E, Aoyagi S, Ishida M, Kikuchi S, Kitaura R, Sugai T, Sakata M and Shinohara H 2006 Chem. Phys. Lett. 428 356
[28] Nishide D, Wakabayashi T, Sugai T, Kitaura R, Kataura H, Achiba Y and Shinohara H 2007 J. Phys. Chem. C 111 5178
[29] Fan X, Dickey E C, Eklund P C, Williams K A, Grigorian L, Buczko R, Pantelides S T and Pennycook S J 2000 Phys. Rev. Lett. 84 4621
[30] Michel K H, Verberck B and Nikolaev A V 2005 Phys. Rev. Lett. 95 185506
[31] Rappe A K, Casewit C J, Colwell K S, Goddard W A and Skiff W M 1992 J. Am. Chem. Soc. 114 10024
[32] Yao Z, Yao M G, Liu R, Ma F X, Lu S C, Jiang L H, Duan D F, Cui T and Liu B B 2013 Cryst. Eng. Comm. 15 7723
[33] Yao Z, Liu R, Ma F X, Lu S C, Tian F B, Duan D F, Cui T and Liu B B 2013 Chin. Phys. B 22 076101
[34] Ma F X, Yao Z, Yao M G, Liu R, Zou B, Cui T and Liu B B 2013 J. Phys.: Condens. Matter 25 928
[35] Stuart S J, Tutein A B and Harrison J A 2000 J. C. P. 112 6472
[36] Rappe A K, Colwell K S and Casewit C J 1993 Inorg. Chem. 32 3438
[37] Girifalco L A, Hodak M and Lee R S 2000 Phys. Rev. B 62 13104
[38] Michel K H, Verberck B and Nikolaev A V 2005 Eur. Phys. J. B 48 113
[39] Verberck B and Michel K H 2006 Phys. Rev. B 74 045421
[40] Song J and Cappelletti R L 1994 Phys. Rev. B 50 14678
[41] Hodak M and Girifalco L A 2001 Chem. Phys. Lett. 350 405
[42] Girifalco L A 1992 J. Phys. Chem. 96 858
[43] Verberck B, Michel K H and Nikolaev A V 2006 Fullerenes, Nanotubes, and Carbon Nanostructures 14 171
[44] Liu H, Dong J M, Qian M C and Wan X G 2003 Chin. Phys. 12 542
[45] Zhou Z, Zhao J J, Schleyer P R and Chen Z F 2007 J. Comput. Chem. 29 781
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[7] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[8] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[9] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[10] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[11] One-dimensional sp carbon: Synthesis, properties, and modifications
Chao-Fan Lv(吕超凡), Xi-Gui Yang(杨西贵), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2022, 31(12): 128103.
[12] Chemical bonding in representative astrophysically relevant neutral, cation, and anion HCnH chains
Ioan Baldea. Chin. Phys. B, 2022, 31(12): 123101.
[13] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[14] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[15] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
No Suggested Reading articles found!