Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 086601    DOI: 10.1088/1674-1056/25/8/086601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Collective diffusion in carbon nanotubes: Crossover between one dimension and three dimensions

Pei-Rong Chen(陈沛荣), Zhi-Cheng Xu(徐志成), Yu Gu(古宇), Wei-Rong Zhong(钟伟荣)
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, College of Science and Engineering, Jinan University, Guangzhou 510632, China
Abstract  Using non-equilibrium molecular dynamics and Monte Carlo methods, we study the collective diffusion of helium in carbon nanotubes. The results show that the collective diffusion coefficient (CDC) increases with the dimension of the channel. The collective diffusion coefficient has a linear relationship with the temperature and the concentration. There exist a ballistic transport in short carbon nanotubes and a diffusive transport in long carbon nanotubes. Fick's law has an invalid region in the nanoscale channel.
Keywords:  transport      carbon nanotube      fluid  
Received:  27 February 2016      Revised:  03 May 2016      Accepted manuscript online: 
PACS:  66.10.cg (Mass diffusion, including self-diffusion, mutual diffusion, tracer diffusion, etc.)  
  66.30.je (Diffusion of gases)  
  05.60.Cd (Classical transport)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004082 and 11291240477), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030313367), and the Fundamental Research Funds for the Central Universities, Jinan University (Grant No. 11614341).
Corresponding Authors:  Wei-Rong Zhong     E-mail:  wrzhong@hotmail.com

Cite this article: 

Pei-Rong Chen(陈沛荣), Zhi-Cheng Xu(徐志成), Yu Gu(古宇), Wei-Rong Zhong(钟伟荣) Collective diffusion in carbon nanotubes: Crossover between one dimension and three dimensions 2016 Chin. Phys. B 25 086601

[1] Tien C L and Chen G 1994 J. Heat Trans. T. Asme. 116 799
[2] Xu Z C, Zheng D Q, Ai B Q, Hu B and Zhong W R 2015 AIP Adv. 5 107145
[3] Alley W E and Alder B J 1979 Phys. Rev. Lett. 43 653
[4] Brogioli D and AVailati A 2000 Phys. Rev. E 63 012105
[5] Cracknell R F, Nicholson D and Quirke N 1995 Phys. Rev. Lett. 74 2463
[6] Chen H B, Johnson J K and Sholl D S 2006 J. Phys. Chem. B 110 1971
[7] Arora G and Sandler S I 2006 J. Chem. Phys. 124 084702
[8] Malek K and Sahimi M 2010 J. Chem. Phys. 132 014310
[9] Liu X, Schnell S K, Simon J M, Bedeaux D, Kjelstrup S, Bardow A and Vlugt T J H 2011 J. Phys. Chem. B 115 12921
[10] Noy A 2013 J. Phys. Chem. C 117 7656
[11] Becker T, Nelissen K, Cleuren B, Partoens B and Van den Broeck C 2013 Phys. Rev. Lett. 111 110601
[12] Liu H J, Dai S and Jiang D E 2013 Nanoscale 5 9984
[13] Hu M and Mi B X 2013 Environ. Sci. Technol. 47 3715
[14] Bucior B J, Chen D L, Liu J C and Johnson J K 2012 J. Phys. Chem. C 116 25904
[15] Salata O V 2004 J. Nanobiotecg. 2 3
[16] Bernkop-Schnürch A, Hoffer M H and Kafedjiiski K 2004 Expert Opin. Drug. Del 1 87
[17] Tang G H, Tao W Q and He Y L 2005 Phys. Rev. E 72 056301
[18] Tang G H, Tao W Q and He Y L 2005 J. Appl. Phys. 97 104918
[19] Fichman M and Hetsroni G 2005 Phys. Fluids 17 123102
[20] Perrier P, Graur I A, Ewart T and Méolans J G 2011 Phys. Fluids 23 042004
[21] Liu Y T and Zhu F Q 2013 Biophysical J. 104 368
[22] Siems U and Nielaba P 2015 Phys. Rev. E 91 022313
[23] Wen J L, Zheng D Q and Zhong W R 2015 RSC Adv. 5 99573
[24] Girifalco L A, Hodak M and Lee R S 2000 Phys. Rev. B 62 13104
[25] Allen M P and Tildesley D J 1987 Computer simulation of liquids (New York:Oxford University Press) pp. 78-82
[26] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[4] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[5] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[6] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[7] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[8] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[11] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[12] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[13] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[14] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[15] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
No Suggested Reading articles found!