Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 086502    DOI: 10.1088/1674-1056/25/8/086502
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm

Yang Hou(侯阳), Lin-Li Zhu(朱林利)
Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
Abstract  

Gallium nitride (GaN), the notable representative of third generation semiconductors, has been widely applied to optoelectronic and microelectronic devices due to its excellent physical and chemical properties. In this paper, we investigate the surface scattering effect on the thermal properties of GaN nanofilms. The contribution of surface scattering to phonon transport is involved in solving a Boltzmann transport equation (BTE). The confined phonon properties of GaN nanofilms are calculated based on the elastic model. The theoretical results show that the surface scattering effect can modify the cross-plane phonon thermal conductivity of GaN nanostructures completely, resulting in the significant change of size effect on the conductivity in GaN nanofilm. Compared with the quantum confinement effect, the surface scattering leads to the order-of-magnitude reduction of the cross-plane thermal conductivity in GaN nanofilm. This work could be helpful for controlling the thermal properties of GaN nanostructures in nanoelectronic devices through surface engineering.

Keywords:  GaN nanofilm      elastic model      quantum confinement      Boltzmann transport equation      size effect      phonon thermal conductivity  
Received:  29 March 2016      Revised:  28 April 2016      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  43.35.Gk (Phonons in crystal lattices, quantum acoustics)  
  44.10.+i (Heat conduction)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11302189 and 11321202) and the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175).

Corresponding Authors:  Lin-Li Zhu     E-mail:  llzhu@zju.edu.cn

Cite this article: 

Yang Hou(侯阳), Lin-Li Zhu(朱林利) Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm 2016 Chin. Phys. B 25 086502

[1] Balandin A A 2005 J. Nanosci. Nanotechnol. 5 1015
[2] Beek J T M and Puers R 2011 J. Micromech. Microeng. 22 1
[3] Tian Z T, Lee S and Chen G 2013 ASME J. Heat Transfer 135 061605
[4] Huang Y, Duan X, Cui Y and Lieber C M 2002 Nano Lett. 2 101
[5] Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi H J and Yang P 2003 Nature 422 599
[6] Gradečak S, Qian F, Li Y, Park H and Lieber C M 2005 Appl. Phys. Lett. 87 173111
[7] Mohammad S N, Salvador A A and Morkoc H 1995 Proc. IEEE 83 1306
[8] Eichenfield M, Chan J, Camacho R M, Vahala K J and Painter O 2009 Nature 462 78
[9] Luo J, Zhao S L, Mi M H, Hou B, Yang X L, Zhang J C, Ma X H and Hao Y 2015 Chin. Phys. B 24 117305
[10] Zhang C, Sun H Q, Li X N, Sun H, Fan X C, Zhang Z D and Guo Z Y 2016 Chin. Phys. B 25 028501
[11] Liu B, Bando Y, Tang C, Xu F and Golberg D 2005 Appl. Phys. Lett. 87 073106
[12] Kuykendall T, Pauzauskie P J, Zhang Y, Goldberger J, Sirbuly D, Denlinger J and Yang P 2004 Nat. Mater. 3 524
[13] Balandin A A, Pokatilov E P and Nika D L 2007 J. Nanoelectron. Optoelectron. 2 140
[14] Wang Z G, Zu X T, Gao F, Weber W J and Crocombette J P 2007 Appl. Phys. Lett. 90 161923
[15] Guthy C, Nam C Y and Fischer J E 2008 J. Appl. Phys. 103 064319
[16] Zou J 2010 J. Appl. Phys. 108 034324
[17] Zhou G and Li L L 2012 J. Appl. Phys. 112 014317
[18] Jung K, Cho M and Zhou M 2012 J. Appl. Phys. 112 083522
[19] Sarma J V N, Chowdhury R and Jayaganthan R 2013 J. Appl. Phys. 113 243504
[20] Zhou X W, Jones R E, Hopkins P E and Beechem T E 2014 Phys. Chem. Chem. Phys. 16 9403
[21] Lindsay L, Broido D A and Reinecke T L 2012 Phys. Rev. Lett. 109 095901
[22] Zhou X W and Jones R E 2012 J. Phys.:Conden. Matter 24 325804
[23] Saadallah F, Benzarti Z, Halidou I, Yacoubi N and Jani B E 2013 OPTIK 124 6190
[24] Ma J L, Wang X J, Huang B L and Luo X B 2013 J. Appl. Phys. 114 074311
[25] Zhu L L and Ruan H H 2014 ASME J. Heat Transfer 136 102402
[26] Pansari A, Gedam V and Sahoo B K 2015 Int. J. Mod. Phys. B 29 1550149
[27] Pansari A, Gedam V and Sahoo B K 2015 J. Phys. Chem. Solids 87 177
[28] Wang Z L, Tian X, Liang J G, Zhu J, Tang D W and Xu K 2014 Int. J. Therm. Sci. 79 266
[29] Liang Z, Sasikumar K and Keblinski P 2014 Phys. Rev. Lett. 113 065901
[30] Li, Y H, Gao Y Y and Song J Z 2016 Theor. Appl. Mech. Lett. 6 32
[31] Bannov N A, Aristov V A and Mitin V V 1995 Phys. Rev. B 51 9930
[32] Osetrov A V, Frohlich H J, Koch R and Chilla E 2000 Phys. Rev. B 62 13963
[33] Pao Y H and Gamer U 1985 J. Acoust. Soc. Am. 77 806
[34] Zhu L L 2015 Chin. Phys. B 24 016201
[35] Auld B A 1973 Acoustic Fields and Waves (New York:Wiley)
[36] Luo H N and Zhu L L 2015 J. Appl. Mech. 82 111002
[37] Majumdar A 1993 J. Heat Transfer 115 7
[38] Chen G 1998 Phys. Rev. B 57 14958
[39] Chen G 1997 J. Heat Transfer 119 220
[40] Dong Y, Cao B Y and Guo Z Y 2014 Physica E 56 256
[41] Hua Y C and Cao B Y 2014 Int. J. Heat Mass Transfer 78 755
[42] Siegel R and Howell J 1993 Thermal Radiation Heat Transfer (Washington:Heisphere)
[43] Ashroft N W and Mermin N D 1976 Solid State Physics (Philadelphia:Saunders)
[44] Martin P, Aksamija Z, Pop E and Ravaioli U 2009 Phys. Rev. Lett. 102 125503
[45] Klemens P G 1977 in Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, eds. Ma E, Fultz B, Shall R, Morral J and Nash P (Warrendale, PA:Minerals, Metals, and Materials Society), p. 97
[46] Mingo N 2003 Phys. Rev. B 68 113308
[47] Klemens P G 1958 in Solid State Physics, eds. Seitz F and Turnbull D (New York:Academic), Vol. 7
[48] Morelli D, Heremans J and Slack G 2002 Phys. Rev. B 66 195304
[49] Hearmon R F S 1979 in Crystal and Solid State Physics, Landolt-Bornstein, New Series, Group III, Vol. 11 (Berlin:Springer) pp. 1-286
[50] Parrott J E 1979 Rev. Int. Hautes Temp. Refract. 16 393
[51] Klemens P G 1960 Phys. Rev. 119 507
[52] Callaway J and von Bayer H C 1960 Phys. Rev. 120 1149
[53] Pkowski S P, Majewski J A and Jurczak G 2005 Phys. Rev. B 72 245201
[54] Pkowski S P and Gorczyca I 2011 Phys. Rev. B 83 203201
[55] Sichel E K and Pankove J I 1977 J. Phys. Chem. Solids 38 330
[56] Hua Y C and Cao B Y 2016 Int. J. Therm. Sci. 101 126
[1] Group velocity matters for accurate prediction of phonon-limited carrier mobility
Qiao-Lin Yang(杨巧林), Hui-Xiong Deng(邓惠雄), Su-Huai Wei(魏苏淮), and Jun-Wei Luo(骆军委). Chin. Phys. B, 2021, 30(8): 087201.
[2] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[3] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[4] Characterization of size effect of natural convection in melting process of phase change material in square cavity
Shi-Hao Cao(曹世豪) and Hui Wang(王辉). Chin. Phys. B, 2021, 30(10): 104403.
[5] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[6] Size effect of Si particles on the electrochemical performances of Si/C composite anodes
Bonan Liu(刘柏男), Hao Lu(陆浩), Geng Chu(褚赓), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Shimou Chen(陈仕谋), Hong Li(李泓). Chin. Phys. B, 2018, 27(8): 088201.
[7] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[8] Investigation of the surface orientation influence on 10-nm double gate GaSb nMOSFETs
Shaoyan Di(邸绍岩), Lei Shen(沈磊), Zhiyuan Lun(伦志远), Pengying Chang(常鹏鹰), Kai Zhao(赵凯), Tiao Lu(卢朓), Gang Du(杜刚), Xiaoyan Liu(刘晓彦). Chin. Phys. B, 2017, 26(4): 047201.
[9] Band structure of silicon and germanium thin films based on first principles
Xue-Ke Wu(吴学科), Wei-Qi Huang(黄伟其), Zhong-Mei Huang(黄忠梅), Chao-Jian Qin(秦朝建), Tai-Ge Dong(董泰阁), Gang Wang(王刚), Yan-Lin Tang(唐延林). Chin. Phys. B, 2017, 26(3): 037302.
[10] Unified semiclassical approach to electronic transport from diffusive to ballistic regimes
Hao Geng(耿浩), Wei-Yin Deng(邓伟胤), Yue-Jiao Ren(任月皎), Li Sheng(盛利), Ding-Yu Xing(邢定钰). Chin. Phys. B, 2016, 25(9): 097201.
[11] Finite size effects on the helical edge states on the Lieb lattice
Rui Chen(陈锐), Bin Zhou(周斌). Chin. Phys. B, 2016, 25(6): 067204.
[12] Temperature-dependent specific heat of suspended platinum nanofilms at 80-380 K
Qin-Yi Li(李秦宜), Masahiro Narasaki(楢崎将弘), Koji Takahashi(高桥厚史), Tatsuya Ikuta(生田竜也), Takashi Nishiyama(西山贵史), Xing Zhang(张兴). Chin. Phys. B, 2016, 25(11): 114401.
[13] Size effects in lithium ion batteries
Hu-Rong Yao(姚胡蓉), Ya-Xia Yin(殷雅侠), Yu-Guo Guo (郭玉国). Chin. Phys. B, 2016, 25(1): 018203.
[14] Improvements in continuum modeling for biomolecular systems
Yu Qiao(乔瑜) and Ben-Zhuo Lu(卢本卓). Chin. Phys. B, 2016, 25(1): 018705.
[15] Finite size effects on the quantum spin Hall state in HgTe quantum wells under two different types of boundary conditions
Cheng Zhi (成志), Chen Rui (陈锐), Zhou Bin (周斌). Chin. Phys. B, 2015, 24(6): 067304.
No Suggested Reading articles found!