CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm |
Yang Hou(侯阳), Lin-Li Zhu(朱林利) |
Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract Gallium nitride (GaN), the notable representative of third generation semiconductors, has been widely applied to optoelectronic and microelectronic devices due to its excellent physical and chemical properties. In this paper, we investigate the surface scattering effect on the thermal properties of GaN nanofilms. The contribution of surface scattering to phonon transport is involved in solving a Boltzmann transport equation (BTE). The confined phonon properties of GaN nanofilms are calculated based on the elastic model. The theoretical results show that the surface scattering effect can modify the cross-plane phonon thermal conductivity of GaN nanostructures completely, resulting in the significant change of size effect on the conductivity in GaN nanofilm. Compared with the quantum confinement effect, the surface scattering leads to the order-of-magnitude reduction of the cross-plane thermal conductivity in GaN nanofilm. This work could be helpful for controlling the thermal properties of GaN nanostructures in nanoelectronic devices through surface engineering.
|
Received: 29 March 2016
Revised: 28 April 2016
Accepted manuscript online:
|
PACS:
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
43.35.Gk
|
(Phonons in crystal lattices, quantum acoustics)
|
|
44.10.+i
|
(Heat conduction)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11302189 and 11321202) and the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175). |
Corresponding Authors:
Lin-Li Zhu
E-mail: llzhu@zju.edu.cn
|
Cite this article:
Yang Hou(侯阳), Lin-Li Zhu(朱林利) Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm 2016 Chin. Phys. B 25 086502
|
[1] |
Balandin A A 2005 J. Nanosci. Nanotechnol. 5 1015
|
[2] |
Beek J T M and Puers R 2011 J. Micromech. Microeng. 22 1
|
[3] |
Tian Z T, Lee S and Chen G 2013 ASME J. Heat Transfer 135 061605
|
[4] |
Huang Y, Duan X, Cui Y and Lieber C M 2002 Nano Lett. 2 101
|
[5] |
Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi H J and Yang P 2003 Nature 422 599
|
[6] |
Gradečak S, Qian F, Li Y, Park H and Lieber C M 2005 Appl. Phys. Lett. 87 173111
|
[7] |
Mohammad S N, Salvador A A and Morkoc H 1995 Proc. IEEE 83 1306
|
[8] |
Eichenfield M, Chan J, Camacho R M, Vahala K J and Painter O 2009 Nature 462 78
|
[9] |
Luo J, Zhao S L, Mi M H, Hou B, Yang X L, Zhang J C, Ma X H and Hao Y 2015 Chin. Phys. B 24 117305
|
[10] |
Zhang C, Sun H Q, Li X N, Sun H, Fan X C, Zhang Z D and Guo Z Y 2016 Chin. Phys. B 25 028501
|
[11] |
Liu B, Bando Y, Tang C, Xu F and Golberg D 2005 Appl. Phys. Lett. 87 073106
|
[12] |
Kuykendall T, Pauzauskie P J, Zhang Y, Goldberger J, Sirbuly D, Denlinger J and Yang P 2004 Nat. Mater. 3 524
|
[13] |
Balandin A A, Pokatilov E P and Nika D L 2007 J. Nanoelectron. Optoelectron. 2 140
|
[14] |
Wang Z G, Zu X T, Gao F, Weber W J and Crocombette J P 2007 Appl. Phys. Lett. 90 161923
|
[15] |
Guthy C, Nam C Y and Fischer J E 2008 J. Appl. Phys. 103 064319
|
[16] |
Zou J 2010 J. Appl. Phys. 108 034324
|
[17] |
Zhou G and Li L L 2012 J. Appl. Phys. 112 014317
|
[18] |
Jung K, Cho M and Zhou M 2012 J. Appl. Phys. 112 083522
|
[19] |
Sarma J V N, Chowdhury R and Jayaganthan R 2013 J. Appl. Phys. 113 243504
|
[20] |
Zhou X W, Jones R E, Hopkins P E and Beechem T E 2014 Phys. Chem. Chem. Phys. 16 9403
|
[21] |
Lindsay L, Broido D A and Reinecke T L 2012 Phys. Rev. Lett. 109 095901
|
[22] |
Zhou X W and Jones R E 2012 J. Phys.:Conden. Matter 24 325804
|
[23] |
Saadallah F, Benzarti Z, Halidou I, Yacoubi N and Jani B E 2013 OPTIK 124 6190
|
[24] |
Ma J L, Wang X J, Huang B L and Luo X B 2013 J. Appl. Phys. 114 074311
|
[25] |
Zhu L L and Ruan H H 2014 ASME J. Heat Transfer 136 102402
|
[26] |
Pansari A, Gedam V and Sahoo B K 2015 Int. J. Mod. Phys. B 29 1550149
|
[27] |
Pansari A, Gedam V and Sahoo B K 2015 J. Phys. Chem. Solids 87 177
|
[28] |
Wang Z L, Tian X, Liang J G, Zhu J, Tang D W and Xu K 2014 Int. J. Therm. Sci. 79 266
|
[29] |
Liang Z, Sasikumar K and Keblinski P 2014 Phys. Rev. Lett. 113 065901
|
[30] |
Li, Y H, Gao Y Y and Song J Z 2016 Theor. Appl. Mech. Lett. 6 32
|
[31] |
Bannov N A, Aristov V A and Mitin V V 1995 Phys. Rev. B 51 9930
|
[32] |
Osetrov A V, Frohlich H J, Koch R and Chilla E 2000 Phys. Rev. B 62 13963
|
[33] |
Pao Y H and Gamer U 1985 J. Acoust. Soc. Am. 77 806
|
[34] |
Zhu L L 2015 Chin. Phys. B 24 016201
|
[35] |
Auld B A 1973 Acoustic Fields and Waves (New York:Wiley)
|
[36] |
Luo H N and Zhu L L 2015 J. Appl. Mech. 82 111002
|
[37] |
Majumdar A 1993 J. Heat Transfer 115 7
|
[38] |
Chen G 1998 Phys. Rev. B 57 14958
|
[39] |
Chen G 1997 J. Heat Transfer 119 220
|
[40] |
Dong Y, Cao B Y and Guo Z Y 2014 Physica E 56 256
|
[41] |
Hua Y C and Cao B Y 2014 Int. J. Heat Mass Transfer 78 755
|
[42] |
Siegel R and Howell J 1993 Thermal Radiation Heat Transfer (Washington:Heisphere)
|
[43] |
Ashroft N W and Mermin N D 1976 Solid State Physics (Philadelphia:Saunders)
|
[44] |
Martin P, Aksamija Z, Pop E and Ravaioli U 2009 Phys. Rev. Lett. 102 125503
|
[45] |
Klemens P G 1977 in Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, eds. Ma E, Fultz B, Shall R, Morral J and Nash P (Warrendale, PA:Minerals, Metals, and Materials Society), p. 97
|
[46] |
Mingo N 2003 Phys. Rev. B 68 113308
|
[47] |
Klemens P G 1958 in Solid State Physics, eds. Seitz F and Turnbull D (New York:Academic), Vol. 7
|
[48] |
Morelli D, Heremans J and Slack G 2002 Phys. Rev. B 66 195304
|
[49] |
Hearmon R F S 1979 in Crystal and Solid State Physics, Landolt-Bornstein, New Series, Group III, Vol. 11 (Berlin:Springer) pp. 1-286
|
[50] |
Parrott J E 1979 Rev. Int. Hautes Temp. Refract. 16 393
|
[51] |
Klemens P G 1960 Phys. Rev. 119 507
|
[52] |
Callaway J and von Bayer H C 1960 Phys. Rev. 120 1149
|
[53] |
Pkowski S P, Majewski J A and Jurczak G 2005 Phys. Rev. B 72 245201
|
[54] |
Pkowski S P and Gorczyca I 2011 Phys. Rev. B 83 203201
|
[55] |
Sichel E K and Pankove J I 1977 J. Phys. Chem. Solids 38 330
|
[56] |
Hua Y C and Cao B Y 2016 Int. J. Therm. Sci. 101 126
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|