|
|
Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr3, AlCu3, and AlCu2Zr: First-principles study |
Parvin R1, Parvin F1, Ali M S2, Islam A K M A3 |
1 Department of Physics, Rajshahi University, Rajshahi-6205, Bangladesh; 2 Department of Physics, Pabna University of Science and Technology, Pabna 6600, Bangladesh; 3 International Islamic University Chittagong, 154/A College Road, Chittagong-4203, Bangladesh |
|
|
Abstract The electronic properties (Fermi surface, band structure, and density of states (DOS)) of Al-based alloys AlM3 (M=Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation (GGA). The structural parameters and elastic constants are evaluated and compared with other available data. Also, the pressure dependences of mechanical properties of the compounds are studied. The temperature dependence of adiabatic bulk modulus, Debye temperature, specific heat, thermal expansion coefficient, entropy, and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T=0 K-100 K. The parameters of optical properties (dielectric functions, refractive index, extinction coefficient, absorption spectrum, conductivity, energy-loss spectrum, and reflectivity) of the compounds are calculated and discussed for the first time. The reflectivities of the materials are quite high in the IR-visible-UV region up to ~15 eV, showing that they promise to be good coating materials to avoid solar heating. Some of the properties are also compared with those of the Al-based Ni3Al compound.
|
Received: 10 October 2015
Revised: 04 April 2016
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
62.20.de
|
(Elastic moduli)
|
|
65.40.gd
|
(Entropy)
|
|
Corresponding Authors:
Ali M S
E-mail: shahajan199@yahoo.com
|
Cite this article:
Parvin R, Parvin F, Ali M S, Islam A K M A Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr3, AlCu3, and AlCu2Zr: First-principles study 2016 Chin. Phys. B 25 083101
|
[1] |
Sauthoff G, Westbrook J H and Fleischer R L (eds.) 1994 Intermetallic Compounds (New York:Wiley) 1 991
|
[2] |
Cahn R W 1998 Intermetallics 6 563
|
[3] |
Rajagopalan P K, Sharma I G and Krishnan T S 1999 J. Alloys Compd. 285 212
|
[4] |
Zhou W, Liu L J, Li B L, Song Q G and Wu P 2009 J. Electron. Mater. 38 356
|
[5] |
Emmanuel C and Sanchez J M 2002 Phys. Rev. B 65 094105
|
[6] |
Ghosh G and Asta M 2005 Acta Mater. 53 3225
|
[7] |
Ghosh G 2007 Acta Mater. 55 3347
|
[8] |
Ma W J, Wang Y R, Wei B C and Sun Y F 2007 Trans. Nonferrous Met. Soc. China 17 929
|
[9] |
Pauly S, Das J, Mattern N, Kim D H and Eckert J 2009 Intermetallics 17 453
|
[10] |
Guan Y Z, Zhang H Y and Li W 2011 Physica B 406 1149
|
[11] |
Zhang B R, Jia Z, Duan X Z and Yang X Z 2013 Acta Phys. Polonica A 23 668
|
[12] |
Fatmi M, Ghebouli M A, Ghebouli B, Chihi T, Boucetta S and Heiba Z K 2011 Rom. J. Phys. 56 935
|
[13] |
Clark S J, Segall M D, Probert M J, Pickard C J, Hasnip P J and Payne M C 2005 Z. Kristallogr. 220 567
|
[14] |
Materials Studio CASTEP manual 2010 ©Accelrys 2010, p. 261 http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.html
|
[15] |
Hohenberg P and Kohn W 1964 Phys. Rev. 136 864
|
[16] |
Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
|
[17] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[18] |
Head J D and Zerner M C 1985 Chem. Phys. Lett. 122 264
|
[19] |
Brillouin C R and Hebd C R 1930 Seances. Acad. Sci. 191 292
|
[20] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[21] |
Milman V and Warren M C 2001 J. Phys.:Condens. Matter 13 241
|
[22] |
Blanco M A, Francisco E and Luaña V 2004 Comput. Phys. Commun. 158 57
|
[23] |
Blanco M A, Penda's A M, Francisco E, Recio J M, Franco R and Mol J 1996 Struct. Theochem. 368 245
|
[24] |
Flórez M, Recio J M, Francisco E, Blanco M A and Pendás A M 2002 Phys. Rev. B 66 144112
|
[25] |
Francisco E, Recio J M, Blanco M A and Pendás A M 1998 J. Phys. Chem. 102 1595
|
[26] |
Birch F 1978 J. Geophys. Res. 83 1257
|
[27] |
Meng W J, Faber J Jr, Okamoto P R, Rehn L E, Kestel B J and Hitterman R L 1990 J. Appl. Phys. 67 1312
|
[28] |
Draissia M, Debili M Y, Boukhris N, Zadam M and Lallouche S 2007 Copper 10 65
|
[29] |
Meyer Z U, Reckendorf R, Schmidt P C and Weiss A Z 1989 Phys. Chem. N F 163 103
|
[30] |
Mattesini M, Ahuja R and Johansson B 2003 Phys. Rev. B 68 184108
|
[31] |
Haines J, Leger J M and Bocquillon G 2001 Ann. Rev. Mater. Res. 3 1
|
[32] |
Pugh S F 1954 Philos. Mag. 45 823
|
[33] |
Zener C M 1948 Elasticity and Anelasticity of Metals (Chicago:University of Chicago Press)
|
[34] |
Chen P, Li D L, Yi J X, Li W, Tang B Y and Peng L M 2009 Solid State Sci. 11 2156
|
[35] |
Xu J H, Lin W and Freeman A J 1993 Phys. Rev. B 48 4276
|
[36] |
Xu J H, Oguchi T and Freeman A J 1987 Phys. Rev. B 36 4186
|
[37] |
Hong T, Watson-Yang T J, Freeman A J, Oguchi T and Xu J H 1990 Phys. Rev. B 41 12462
|
[38] |
Swetarekha Ram, Kanchana V, Svane A, Dugdale S B and Christensen N E 2013 J. Phys.:Condens. Matter 25 155501
|
[39] |
Leadbetter H M, Reep R P and Clark A F (eds.) Materials at Lower Temperature 1983 (Ohio:ASM Metal Park)
|
[40] |
Ali M S, Islam A K M A, Hossain M M and Parvin F 2012 Physica B 407 4221
|
[41] |
Reshak A H, Atuchin V V, Auluck S and Kityk I V 2008 J. Phys.:Condens. Matter 20 325234
|
[42] |
Shaha S, Sinha T P and Mookarjee A 2000 Phys. Rev. B 62 8828
|
[43] |
Li C, Wang B, Li Y and Wang R 2009 J. Phys. D:Appl. Phys. 42 065407
|
[44] |
Li C, Kuo J, Wang B, Li Y and Wang R 2009 J. Phys. D:Appl. Phys. 42 075404
|
[45] |
Li S, Ahuja R, Barsoum M W, Jena P and Johansson B 2008 Appl. Phys. Lett. 92 221907
|
[46] |
Saniz R, Ye L H, Shishidou T and Freeman A J 2006 Phys. Rev. B 74 014209
|
[47] |
Fox M 1972 Optical Properties of Solids (New York:Academic Press)
|
[48] |
De Almeida J S and Ahuja R 2006 Phys. Rev. B 73 165102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|