Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 083101    DOI: 10.1088/1674-1056/25/8/083101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr3, AlCu3, and AlCu2Zr: First-principles study

Parvin R1, Parvin F1, Ali M S2, Islam A K M A3
1 Department of Physics, Rajshahi University, Rajshahi-6205, Bangladesh;
2 Department of Physics, Pabna University of Science and Technology, Pabna 6600, Bangladesh;
3 International Islamic University Chittagong, 154/A College Road, Chittagong-4203, Bangladesh
Abstract  The electronic properties (Fermi surface, band structure, and density of states (DOS)) of Al-based alloys AlM3 (M=Zr and Cu) and AlCu2Zr are investigated using the first-principles pseudopotential plane wave method within the generalized gradient approximation (GGA). The structural parameters and elastic constants are evaluated and compared with other available data. Also, the pressure dependences of mechanical properties of the compounds are studied. The temperature dependence of adiabatic bulk modulus, Debye temperature, specific heat, thermal expansion coefficient, entropy, and internal energy are all obtained for the first time through quasi-harmonic Debye model with phononic effects for T=0 K-100 K. The parameters of optical properties (dielectric functions, refractive index, extinction coefficient, absorption spectrum, conductivity, energy-loss spectrum, and reflectivity) of the compounds are calculated and discussed for the first time. The reflectivities of the materials are quite high in the IR-visible-UV region up to ~15 eV, showing that they promise to be good coating materials to avoid solar heating. Some of the properties are also compared with those of the Al-based Ni3Al compound.
Keywords:  first principle calculations      Fermi surface      elastic moduli      entropy      and internal energy      optical properties  
Received:  10 October 2015      Revised:  04 April 2016      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  62.20.de (Elastic moduli)  
  65.40.gd (Entropy)  
Corresponding Authors:  Ali M S     E-mail:  shahajan199@yahoo.com

Cite this article: 

Parvin R, Parvin F, Ali M S, Islam A K M A Band structure, Fermi surface, elastic, thermodynamic, and optical properties of AlZr3, AlCu3, and AlCu2Zr: First-principles study 2016 Chin. Phys. B 25 083101

[1] Sauthoff G, Westbrook J H and Fleischer R L (eds.) 1994 Intermetallic Compounds (New York:Wiley) 1 991
[2] Cahn R W 1998 Intermetallics 6 563
[3] Rajagopalan P K, Sharma I G and Krishnan T S 1999 J. Alloys Compd. 285 212
[4] Zhou W, Liu L J, Li B L, Song Q G and Wu P 2009 J. Electron. Mater. 38 356
[5] Emmanuel C and Sanchez J M 2002 Phys. Rev. B 65 094105
[6] Ghosh G and Asta M 2005 Acta Mater. 53 3225
[7] Ghosh G 2007 Acta Mater. 55 3347
[8] Ma W J, Wang Y R, Wei B C and Sun Y F 2007 Trans. Nonferrous Met. Soc. China 17 929
[9] Pauly S, Das J, Mattern N, Kim D H and Eckert J 2009 Intermetallics 17 453
[10] Guan Y Z, Zhang H Y and Li W 2011 Physica B 406 1149
[11] Zhang B R, Jia Z, Duan X Z and Yang X Z 2013 Acta Phys. Polonica A 23 668
[12] Fatmi M, Ghebouli M A, Ghebouli B, Chihi T, Boucetta S and Heiba Z K 2011 Rom. J. Phys. 56 935
[13] Clark S J, Segall M D, Probert M J, Pickard C J, Hasnip P J and Payne M C 2005 Z. Kristallogr. 220 567
[14] Materials Studio CASTEP manual 2010 ©Accelrys 2010, p. 261 http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.html
[15] Hohenberg P and Kohn W 1964 Phys. Rev. 136 864
[16] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[17] Vanderbilt D 1990 Phys. Rev. B 41 7892
[18] Head J D and Zerner M C 1985 Chem. Phys. Lett. 122 264
[19] Brillouin C R and Hebd C R 1930 Seances. Acad. Sci. 191 292
[20] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[21] Milman V and Warren M C 2001 J. Phys.:Condens. Matter 13 241
[22] Blanco M A, Francisco E and Luaña V 2004 Comput. Phys. Commun. 158 57
[23] Blanco M A, Penda's A M, Francisco E, Recio J M, Franco R and Mol J 1996 Struct. Theochem. 368 245
[24] Flórez M, Recio J M, Francisco E, Blanco M A and Pendás A M 2002 Phys. Rev. B 66 144112
[25] Francisco E, Recio J M, Blanco M A and Pendás A M 1998 J. Phys. Chem. 102 1595
[26] Birch F 1978 J. Geophys. Res. 83 1257
[27] Meng W J, Faber J Jr, Okamoto P R, Rehn L E, Kestel B J and Hitterman R L 1990 J. Appl. Phys. 67 1312
[28] Draissia M, Debili M Y, Boukhris N, Zadam M and Lallouche S 2007 Copper 10 65
[29] Meyer Z U, Reckendorf R, Schmidt P C and Weiss A Z 1989 Phys. Chem. N F 163 103
[30] Mattesini M, Ahuja R and Johansson B 2003 Phys. Rev. B 68 184108
[31] Haines J, Leger J M and Bocquillon G 2001 Ann. Rev. Mater. Res. 3 1
[32] Pugh S F 1954 Philos. Mag. 45 823
[33] Zener C M 1948 Elasticity and Anelasticity of Metals (Chicago:University of Chicago Press)
[34] Chen P, Li D L, Yi J X, Li W, Tang B Y and Peng L M 2009 Solid State Sci. 11 2156
[35] Xu J H, Lin W and Freeman A J 1993 Phys. Rev. B 48 4276
[36] Xu J H, Oguchi T and Freeman A J 1987 Phys. Rev. B 36 4186
[37] Hong T, Watson-Yang T J, Freeman A J, Oguchi T and Xu J H 1990 Phys. Rev. B 41 12462
[38] Swetarekha Ram, Kanchana V, Svane A, Dugdale S B and Christensen N E 2013 J. Phys.:Condens. Matter 25 155501
[39] Leadbetter H M, Reep R P and Clark A F (eds.) Materials at Lower Temperature 1983 (Ohio:ASM Metal Park)
[40] Ali M S, Islam A K M A, Hossain M M and Parvin F 2012 Physica B 407 4221
[41] Reshak A H, Atuchin V V, Auluck S and Kityk I V 2008 J. Phys.:Condens. Matter 20 325234
[42] Shaha S, Sinha T P and Mookarjee A 2000 Phys. Rev. B 62 8828
[43] Li C, Wang B, Li Y and Wang R 2009 J. Phys. D:Appl. Phys. 42 065407
[44] Li C, Kuo J, Wang B, Li Y and Wang R 2009 J. Phys. D:Appl. Phys. 42 075404
[45] Li S, Ahuja R, Barsoum M W, Jena P and Johansson B 2008 Appl. Phys. Lett. 92 221907
[46] Saniz R, Ye L H, Shishidou T and Freeman A J 2006 Phys. Rev. B 74 014209
[47] Fox M 1972 Optical Properties of Solids (New York:Academic Press)
[48] De Almeida J S and Ahuja R 2006 Phys. Rev. B 73 165102
[1] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[2] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[5] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[6] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[7] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[8] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[9] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
[10] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
[11] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[12] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[13] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[14] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[15] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
No Suggested Reading articles found!