Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078102    DOI: 10.1088/1674-1056/25/7/078102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Tunable thermoelectric properties in bended graphene nanoribbons

Chang-Ning Pan(潘长宁)1, Jun He(何军)1, Mao-Fa Fang(方卯发)2
1 School of Science, Hunan University of Technology, Zhuzhou 412008, China;
2 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  The ballistic thermoelectric properties in bended graphene nanoribbons (GNRs) are systematically investigated by using atomistic simulation of electron and phonon transport. We find that the electron resonant tunneling effect occurs in the metallic-semiconducting linked ZZ-GNRs (the bended GNRs with zigzag edge leads). The electron-wave quantum interference effect occurs in the metallic-metallic linked AA-GNRs (the bended GNRs with armchair edge leads). These different physical mechanisms lead to the large Seebeck coefficient S and high electron conductance in bended ZZ-GNRs/AA-GNRs. Combined with the reduced lattice thermal conduction, the significant enhancement of the figure of merit ZT is predicted. Moreover, we find that the ZT\max (the maximum peak of ZT) is sensitive to the structural parameters. It can be conveniently tuned by changing the interbend length of bended GNRs. The magnitude of ZT ranges from the 0.15 to 0.72. Geometry-controlled ballistic thermoelectric effect offers an effective way to design thermoelectric devices such as thermocouples based on graphene.
Keywords:  graphene nanoribbons      thermoelectric properties      quantum interference effect  
Received:  01 February 2016      Revised:  25 March 2016      Accepted manuscript online: 
PACS:  81.05.U- (Carbon/carbon-based materials)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61401153) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ2050 and 14JJ3126).
Corresponding Authors:  Jun He     E-mail:  hejun@hnu.edu.cn

Cite this article: 

Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发) Tunable thermoelectric properties in bended graphene nanoribbons 2016 Chin. Phys. B 25 078102

[1] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[2] Geim A K 2009 Science 324 1530
[3] Wang Q, Xie H Q, Jiao H J, Li Z J and Nie Y H 2012 Chin. Phys. B 21 117310
[4] Wu Z H, Xie H Q, Zhai Y B, Gan L H and Liu J 2015 Chin. Phys. B 24 034402
[5] Yu Z, Guo Y, Zheng J and Chi F 2013 Chin. Phys. B 22 117303
[6] Feng S K, Li S M and Fu H Z 2014 Chin. Phys. B 23 117202
[7] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
[8] Xue L, Xu B and Yi L 2014 Chin. Phys. B 23 037103
[9] Kim R, Datta S and Lundstrom M S 2009 J. Appl. Phys. 105 034506
[10] Zhou J and Yang R G 2011 Appl. Phys. Lett. 98 173107
[11] Mazzamuto F, Nguyen V H, Apertet Y, Caër C, Chassat C, Martin J S and Dollfus P 2011 Phys. Rev. B 83 235426
[12] Ouyang Y and Guo J 2009 Appl. Phys. Lett. 94 263107
[13] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213
[14] Li W, Sevincli H, Cuniberti G and Roche S 2010 Phys. Rev. B 82 041410
[15] Gunst T, Markussen T, Jauho A P and Brandbyge M 2011 Phys. Rev. B 84 155449
[16] Chang P H and Nikolić B K 2012 Phys. Rev. B 86 041406
[17] Jiang J W, Lan J H, Wang J S and Li B W 2010 J. Appl. Phys. 107 054314
[18] Hu J, Schiffli S, Vallabhaneni A, Ruan X and Chen Y P 2010 Appl. Phys. Lett. 97 133107
[19] Xu Y, Chen X B, Gu B L and Duan W H 2009 Appl. Phys. Lett. 95 233116
[20] Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381
[21] Jiang J W, Wang J S and Li B W 2011 J. Appl. Phys. 109 014326
[22] Pan C N, Xie Z X, Tang L M and Chen K Q 2012 Appl. Phys. Lett. 101 103115
[23] Wu Y and Yang X X 1997 Phys. Rev. Lett. 78 3086
[24] Shi Q W, Zhou J and Wu M W 2004 Appl. Phys. Lett. 85 2547
[25] Weisshaar A, Lary J, Goodnick S M and Tripathi V K 1989 Appl. Phys. Lett. 55 2114
[26] Nie Y H, Zhang Y B, Liang J Q, et al. 1999 Physica B: Condensed Matter 270 95
[27] Nie Y H, Jin Y H, Liang J Q, et al. 2000 J. Phys.: Conden. Matt. 12 L87
[28] Li X Q and Yan Y J 2001 Appl. Phys. Lett. 79 2190
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[6] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[7] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[8] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[9] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[10] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[11] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[12] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[13] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[14] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[15] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
No Suggested Reading articles found!