|
|
Structures, stabilities, and magnetic properties of the FenAu (n= 1-12) clusters |
Jin Lü(吕瑾), Jiang-Yan Zhang(张江燕), Rui-Rui Liang(梁瑞瑞), Hai-Shun Wu(武海顺) |
School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China |
|
|
Abstract The configurations, stabilities, electronic, and magnetic properties of FenAu (n= 1-12) clusters are investigated systematically by using the relativistic all-electron density functional theory with the generalized gradient approximation. The substitutional effects of Au in Fen+1 (n= 1, 2, 4, 5, 10-12) clusters are found in optimized structures which keep the similar frameworks with the most stable Fen+1 clusters. And the growth way for FenAu (n= 6-9) clusters is that the Au atom occupies a peripheral position of Fen cluster. The peaks appear respectively at n= 6 and 9 for FenAu clusters and at n= 5 and 10 for Fen+1 clusters based on the size dependence of second-order difference of energy, implying that these clusters possess relatively high stabilities. The analysis of atomic net charge Q indicates that the charge always transfers from Fe to Au atom which causes the Au atom to be nearly non-magnetic, and the doped Au atom has little effect on the average magnetic moment of Fe atoms in FenAu cluster. Finally, the total magnetic moment is reduced by 3 μB for each of FenAu clusters except n= 3, 11, and 12 compared with for corresponding pure Fen+1 clusters.
|
Received: 24 January 2016
Revised: 02 April 2016
Accepted manuscript online:
|
PACS:
|
31.15.E-
|
|
|
36.40.Mr
|
(Spectroscopy and geometrical structure of clusters)
|
|
36.40.Cg
|
(Electronic and magnetic properties of clusters)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21301112) and the Ph. D. Program Foundation of the Education Ministry of China (Grant No. 20131404120001). |
Corresponding Authors:
Jin Lü
E-mail: lvjin_sxnu@163.com
|
Cite this article:
Jin Lü(吕瑾), Jiang-Yan Zhang(张江燕), Rui-Rui Liang(梁瑞瑞), Hai-Shun Wu(武海顺) Structures, stabilities, and magnetic properties of the FenAu (n= 1-12) clusters 2016 Chin. Phys. B 25 063103
|
[1] |
Montano P A and Shenoy G K 1980 Solid State Commun. 35 53
|
[2] |
Purdum H, Montano P A, Shenoy G K and Morrison T 1982 Phys. Rev. B 25 4412
|
[3] |
Rohlfing E A, Cox D M, Kaldor A and Johnson K H 1984 J. Chem. Phys. 81 3846
|
[4] |
Cox D M, Trevor D J, Whetten R L, Rohlfing E A and Kaldor A 1985 Phys. Rev. B 32 7290
|
[5] |
Sakurai M, Watanabe K, Sumiyama K and Suzuki K 1999 J. Chem. Phys. 111 235
|
[6] |
Cheng Z D, Ling T and Zhu J 2010 Chin. Phys. B 19 057101
|
[7] |
Rollmann G, Entel P and Sahoo S 2006 Comput. Mater. Sci. 35 275
|
[8] |
Diéguez O, Alemany M M G, Rey C, Ordejón P and Gallego L J 2001 Phys. Rev. B 63 205407
|
[9] |
Gutsev G L and Bauschlicher C W 2003 J. Phys. Chem. A 107 7013
|
[10] |
Yu S, Chen S, Zhang W, Yu L and Yin Y 2007 Chem. Phys. Lett. 446 217
|
[11] |
Ma Q M, Xie Z, Wang J, Liu Y and Li Y C 2007 Solid State Commun. 142 114
|
[12] |
Gutsev G L, Weatherford C A, Jena P, Johnson E and Ramachandran B R 2012 J. Phys. Chem. A 116 10218
|
[13] |
Kim E, Mohrland A, Weck P F, Pang T, Czerwinski K R and Tománek D 2014 Chem. Phys. Lett. 613 59
|
[14] |
Yuan H K, Chen H, Kuang A L, Tian C L and Wang J Z 2013 J. Chem. Phys. 139 034314
|
[15] |
Whetten R L, Cox D M, Trevor D J and Kaldor A 1985 Phys. Rev. Lett. 54 1494
|
[16] |
Schnabel P and Irion M P 1992 Ber. Bunsenges Phys. Chem. 96 1101
|
[17] |
Griffin J B and Armentrout P B 1997 J. Chem. Phys. 106 4448
|
[18] |
Lian L, Su C X and Armentrout P B 1992 J. Chem. Phys. 97 4072
|
[19] |
Schnabel P, Irion M P and Weil K G 1991 J. Phys. Chem. 95 9688
|
[20] |
Schnabel P, Weil K G and Irion M P 1992 Angew. Chem. Int. Ed. Engl. 31 636
|
[21] |
Gehret O and Irion M P 1996 Chem. Phys. Lett. 254 379
|
[22] |
McCarthy J R and Weissleder R 2008 Adv. Drug Deliv. Rev. 60 1241
|
[23] |
Mornet S, Vasseur S, Grasset F and Duguet E 2004 J. Mater. Chem. 14 2161
|
[24] |
Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V and Muller R N 2008 Chem. Rev. 108 2064
|
[25] |
De H S, Krishnamurty S and Pal S 2010 J. Phys. Chem. C 114 6690
|
[26] |
Baishya S and Deka R C 2012 Comput. Theor. Chem. 1002 1
|
[27] |
Manzoor D, Pal S and Krishnamurty S 2013 J. Phys. Chem. C 117 20982
|
[28] |
Corti C W, Holliday R J and Thompson D T 2005 Appl. Catal., A Gen. 291 253
|
[29] |
Service R F 2004 Science 306 2035
|
[30] |
Sun Q, Wang Q, Rao B K and Jena P 2004 Phys. Rev. Lett. 93 186803
|
[31] |
Wang Y J, Wang C Y and Wang S Y 2011 Chin. Phys. B 20 036801
|
[32] |
Liu H L, Hou P, Zhang W X, Kim Y K and Wu J H 2010 Nanotechnology 21 335602
|
[33] |
Sun Q, Kandalam A K, Wang Q, Jena P, Kawazoe Y and Marquez M 2006 Phys. Rev. B 73 134409
|
[34] |
Wijaya A, Brown K A, Alper J D and Hamad-Schifferli K 2007 J. Magn. Magn. Mater. 309 15
|
[35] |
Gorshunov B, Kaiser S, Zhukova E S, Prokhorov A S, Hesselberth M B S, Aarts J, Nieuwenhuys G J and Dressel M 2009 Phys. Rev. B 79 054203
|
[36] |
Wilhelm F, Poulopoulos P, Kapaklis V, Kappler J P, Jaouen N, Rogalev A, Yaresko A N and Politis C 2008 Phys. Rev. B 77 224414
|
[37] |
Crespo P, García M A, Pinel E F, Multigner M, Alcántara D, Fuente J M, Penadés S and Hernando A 2006 Phys. Rev. Lett. 97 177203
|
[38] |
Sternik M and Parlinski K 2007 Phys. Rev. B 75 212406
|
[39] |
Die D, Kuang X Y, Guo J J and Zheng B X 2009 J. Mol. Struc: Theochem. 902 54
|
[40] |
Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem. C 113 6491
|
[41] |
Torres M B 2005 Phys. Rev. B 71 155412
|
[42] |
Yang A, Fa W and Dong J M 2010 J. Phys. Chem. A 114 4031
|
[43] |
Wang L M, Bai J, Lechtken A, Huang W, Schooss D, Kappes M M, Zeng X C and Wang L S 2009 Phys. Rev. B 79 033413
|
[44] |
Die D, Kuang X Y, Zhu B and Guo J J 2011 Physica B 406 3160
|
[45] |
Die D, Kuang X Y, Guo J J and Zheng B X 2010 Physica A 389 5216
|
[46] |
Tanaka H, Neukermans S, Janssens E, Silverans R E and Lievens P 2003 J. Chem. Phys. 119 7115
|
[47] |
Wang Q, Sun Q, Jena P and Kawazoe Y 2010 Phys. Chem. Chem. Phys. 12 1493
|
[48] |
Delley B 1990 J. Chem. Phys. 92 508
|
[49] |
Delley B 2000 J. Chem. Phys. 113 7756
|
[50] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[51] |
Delley B 1998 Int. J. Quantum Chem. 69 423
|
[52] |
Song W, Lu W C, Wang C Z and Ho K M 2011 Comput. Theor. Chem. 978 41
|
[53] |
Datta S, Kabir M, Ganguly S, Sanyal B, Saha-Dasgupta T and Mookerjee A 2007 Phys. Rev. B 76 014429
|
[54] |
Kabir M and Mookerjee A 2006 Phys. Rev. B 73 224439
|
[55] |
Wang J L 2007 Phys. Rev. B 75 155422
|
[56] |
Shen N F, Wang J L and L Y Zhu 2008 Chem. Phys. Lett. 467 114
|
[57] |
Wu P, Yuan L F and Yang J L 2008 J. Phys. Chem. A 112 12320
|
[58] |
Tian F Y, Jing Q and Wang Y X 2008 Phys. Rev. A 77 013202
|
[59] |
Wang B R, Ma Q M, Liu Y and Li Y C 2009 Solid State Comm. 149 210
|
[60] |
Ma Q M, Xie Z, Wang B R, Liu Y and Li Y C 2011 Solid State Comm. 151 806
|
[61] |
Liang R R, Lv J and Wu H S 2014 Eur. Phys. J. D 68 187
|
[62] |
Aghajani M, Hashemifar S J and Akbarzadeh H 2014 Physica E 62 64
|
[63] |
Zhang Y, Duan Y N, Zhang J M and Xu K W 2011 J. Magn. Magn. Mater. 323 842
|
[64] |
Chittari B L and Kumar V 2015 Phys. Rev. B 92 125442
|
[65] |
Zhao G F, Zhang J and Jing Q 2007 J. Chem. Phys. 127 234312
|
[66] |
Lv J, Wang Y C, Zhu L and Ma Y M 2012 J. Chem. Phys. 137 084104
|
[67] |
Zhang M, Zhang H, Zhao L, Li Y and Luo Y 2012 J. Phys. Chem. A 116 1493
|
[68] |
Weast R C 1974 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press)
|
[69] |
Ho J, Ervin K M and Lineberger W C 1990 J. Chem. Phys. 93 6987
|
[70] |
Brucat P J, Zheng L S, Pettiette C L, Yang S and Smalley R E 1986 J. Chem. Phys. 84 3078
|
[71] |
Moskowits M and DiLella D P 1980 J. Chem. Phys. 73 4917
|
[72] |
Ferrando R, Jellinek J and Johnston R L 2008 Chem. Rev. 108 845
|
[73] |
Lu Q L, Zhu L Z, Ma L andWang G H 2005 Chem. Phys. Lett. 407 176
|
[74] |
Wang J L,Wang G H, Chen X S, Lu Wand Zhao J J 2002 Phys. Rev. B 66 014419
|
[75] |
Vitos L, Ruban A V, Skriver H L and Koll´ar J 1998 Surf. Sci. 411 186
|
[76] |
Kittel C 2005 Introduction to Solid State Physics, 8th edn. (New York: Wiley)
|
[77] |
Wang M, Huang X, Du Z and Li Y 2009 Chem. Phys. Lett. 480 258
|
[78] |
Zope R R and Baruah T 2001 Phys. Rev. A 64 53202
|
[79] |
Li S F and Gong X G 2006 Phys. Rev. B 74 045432
|
[80] |
Wang X, Cao Z X, Lu X, Lin M H and Zhang Q E 2005 J. Chem. Phys. 123 064315
|
[81] |
Lv J, Zhang F Q, Xu X H and Wu H S 2009 Chem. Phys. 363 65
|
[82] |
Venkataramanan N S, Sahara R, Mizuseki H and Y Kawazoe 2010 J. Phys. Chem. A 114 5049
|
[83] |
Alonso J A 2000 Chem. Rev. 100 637
|
[84] |
Yuan H K, H Chen, Kuang A L, Ahmed A S and Xiong Z H 2007 Phys. Rev. B 75 174412
|
[85] |
Zhang G W, Feng Y P and Ong C K 1996 Z. Phys. D 38 241
|
[86] |
Duan H M and Zheng Q Q 2001 Phys. Lett. A 280 333
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|