|
|
Photoionization microscopy of Rydberg hydrogen atom in a non-uniform electrical field |
Shao-Hao Cheng(程绍昊), De-Hua Wang(王德华), Zhao-Hang Chen(陈召杭), Qiang Chen(陈强) |
School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China |
|
|
Abstract In this paper, we investigate the photoionization microscopy of the Rydberg hydrogen atom in a gradient electric field for the first time. The observed oscillatory patterns in the photoionization microscopy are explained within the framework of the semiclassical theory, which can be considered as a manifestation of interference between various electron trajectories arriving at a given point on the detector plane. In contrast with the photoionization microscopy in the uniform electric field, the trajectories of the ionized electron in the gradient electric field will become chaotic. An infinite set of different electron trajectories can arrive at a given point on the detector plane, which makes the interference pattern of the electron probability density distribution extremely complicated. Our calculation results suggest that the oscillatory pattern in the electron probability density distribution depends sensitively on the electric field gradient, the scaled energy and the position of the detector plane. Through our research, we predict that the interference pattern in the electron probability density distribution can be observed in an actual photoionization microscopy experiment once the external electric field strength and the position of the electron detector plane are reasonable. This study provides some references for the future experimental research on the photoionization microscopy of the Rydberg atom in the non-uniform external fields.
|
Received: 02 August 2015
Revised: 25 February 2016
Accepted manuscript online:
|
PACS:
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
03.65.Sq
|
(Semiclassical theories and applications)
|
|
07.81.+a
|
(Electron and ion spectrometers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374133) and the Project of Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J13LJ04). |
Corresponding Authors:
De-Hua Wang
E-mail: lduwdh@163.com
|
Cite this article:
Shao-Hao Cheng(程绍昊), De-Hua Wang(王德华), Zhao-Hang Chen(陈召杭), Qiang Chen(陈强) Photoionization microscopy of Rydberg hydrogen atom in a non-uniform electrical field 2016 Chin. Phys. B 25 063201
|
[1] |
Blondel C, Delsart C and Dulieu F 1996 Phys. Rev. Lett. 77 3755
|
[2] |
Blondel C, Delsart C, Dulieu F and Valli C 1999 Eur. Phys. J. D 5 207
|
[3] |
Bordas C 1998 Phys. Rev. A 58 400
|
[4] |
Lepine F, Bordas C, Nicole C and Vrakking M J J 2004 Phys. Rev. A 70 033417
|
[5] |
Bracher C, Kramer T and Delos J B 2006 Phys. Rev. A 73 062114
|
[6] |
Kramer T, Bracher C and Kleber M 2001 Europhys. Lett. 56 471
|
[7] |
Nicole C, Sluimer I, Rosca-Pruna F, Warntjes M, Vrakking M, Bordas C, Texier F and Robicheaux F 2000 Phys. Rev. Lett. 85 4024
|
[8] |
Kramer T, Bracher C and Kleber M 2002 J. Phys. A: Math. Gen. 35 8361
|
[9] |
Gao S, Yang G C, Lin S L and Du M L 2007 Eur. Phys. J. D 42 189
|
[10] |
Bracher C and Delos J B 2006 Phys. Rev. Lett. 96 100404
|
[11] |
Du M L 1989 Phys. Rev. A 40 4983
|
[12] |
Nicole C, Offerhaus H L, Vrakking M J J, Lepine F and Bordas C 2002 Phys. Rev. Lett. 88 133001
|
[13] |
Bordas C, Lepine F, Nicole C and Vrakking M J J 2003 Phys. Rev. A 68 012709
|
[14] |
Landau L D and Lifshitz E M 1981 Quantum Mechanics: Non-Relativistic Theory (Amsterdam: Elsevier)
|
[15] |
Damburg R J and Kolosov V V 1976 J. Phys. B: At Mol. Opt. Phys. 9 3149
|
[16] |
Luc-Koenig E and Bachelier A 1980 J. Phys. B: At. Mol. Opt. Phys. 13 1743
|
[17] |
Alijah A, Broad J T and Hinze J 1992 J. Phys. B: At. Mol. Opt. Phys. 25 5043
|
[18] |
Demkov Y, Kondratovich V and Ostrovskii V 1982 JETP Lett. 34 403
|
[19] |
Kondratovich V D and Ostrovsky V N 1984 J. Phys. B: At. Mol. Opt. Phys. 17 1981
|
[20] |
Kondratovich V D and Ostrovsky V N 1984 J. Phys. B: At. Mol. Opt. Phys. 17 2011
|
[21] |
Kondratovich V D and Ostrovsky V N 1990 J. Phys. B: At. Mol. Opt. Phys. 23 3785
|
[22] |
Stodolna A S, Rouzee A and Lepine F, et al. 2013 Phys. Rev. Lett. 110 213001
|
[23] |
Zhao L B and Delos J B 2010 Phys. Rev. A 81 053417
|
[24] |
Zhao L B and Delos J B 2010 Phys. Rev. A 81 053418
|
[25] |
Wang D H, Cheng S H and Chen Z H 2015 J. Electron. Spectrosc. 202 62
|
[26] |
Wang D H, Tang T T and Tian L J 2012 Braz. J. Phys. 42 323
|
[27] |
Wang L, Yang H F, Liu X J, Liu H P, Zhan M S and Delos J B 2010 Phys. Rev. A 82 022514
|
[28] |
Dumin Yurii V 2014 arXiv: 1411.6181v1 [physics.atom-ph]
|
[29] |
Yang G C and Du M L 1999 Phys. Rev. A 59 2053
|
[30] |
Wang D H and Tang T T 2015 Commun. Theor. Phys. 63
|
[31] |
Liu T Q, Wang D H, Han C, Liu J, Liang D Q and Xie S C 2012 Chin. Phys. B 21 043401
|
[32] |
Zhou H, Li H Y, Gao S, Zhang Y H, Jia Z M and Lin S L 2008 Chin. Phys. B 17 4428
|
[33] |
Mitchell K A, Handley J P, Tighe B and Delos J B 2004 Phys. Rev. Lett. 92 073001
|
[34] |
Mitchell K A, Handley J P, Tighe B and Delos J B 2004 Phys. Rev. A 70 043407
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|