Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 060702    DOI: 10.1088/1674-1056/25/6/060702
GENERAL Prev   Next  

Spectroscopic measurements and terahertz imaging of the cornea using a rapid scanning terahertz time domain spectrometer

Wen-Quan Liu(刘文权)1,2,3,4, Yuan-Fu Lu(鲁远甫)1,2,4, Guo-Hua Jiao(焦国华)1,2,4, Xian-Feng Chen(陈险峰)5, Zhi-Sheng Zhou(周志盛)1,2,4, Rong-Bin She(佘荣斌)1,2,4, Jin-Ying Li(李金瑛)6, Si-Hai Chen(陈四海)1,2,4, Yu-Ming Dong (董玉明)1,2,4, Jian-Cheng Lü(吕建成)1,2,4
1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
2 Biomedical Engineering Laboratory for Photoelectric Sensing Technology, Shenzhen 518055, China;
3 Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China;
4 The Chinese University of Hong Kong, Shatin, Hong Kong, China;
5 School of Electronic Engineering, Bangor University, Bangor, Gwynedd LL57 1UT, UK;
6 Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen 518036, China
Abstract  

Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy (THz-TDS) system. A voice coil motor stage based optical delay line (VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length. The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content, and the measurement results show the consistence with the reported results, in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line (MDL). With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed. The two-term Debye relaxation model is employed to explain our experimental results, revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules. These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology.

Keywords:  terahertz      rapid scanning terahertz time domain spectrometer      tissue diagnostics      terahertz imaging  
Received:  17 December 2015      Revised:  22 March 2016      Accepted manuscript online: 
PACS:  07.57.Pt (Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  87.64.-t (Spectroscopic and microscopic techniques in biophysics and medical physics)  
  87.85.Pq (Biomedical imaging)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61205101), the Shenzhen Municipal Research Foundation, China (Grant Nos. GJHZ201404171134305 and JCYJ20140417113130693), and the Marie Curie Actions-International Research Staff Exchange Scheme (IRSES) (Grant No. FP7 PIRSES-2013-612267).

Corresponding Authors:  Yuan-Fu Lu     E-mail:  yf.lu@siat.ac.cn

Cite this article: 

Wen-Quan Liu(刘文权), Yuan-Fu Lu(鲁远甫), Guo-Hua Jiao(焦国华), Xian-Feng Chen(陈险峰), Zhi-Sheng Zhou(周志盛), Rong-Bin She(佘荣斌), Jin-Ying Li(李金瑛), Si-Hai Chen(陈四海), Yu-Ming Dong (董玉明), Jian-Cheng Lü(吕建成) Spectroscopic measurements and terahertz imaging of the cornea using a rapid scanning terahertz time domain spectrometer 2016 Chin. Phys. B 25 060702

[1] Jepsen P U, Cooke D G and Koch M 2011 Laser Photon. Rev. 5 124
[2] Taylor Z D, Garritano J, Shijun S, Bajwa N, Bennett D B, Nowroozi B, Tewari P, Sayre J W, Hubschman J P, Deng S X, Brown E R and Grundfest W S 2015 IEEE Trans. Terahertz Sci. Technol. 5 184
[3] Taylor Z D, Garritano J, Sung S, Bajwa N, Bennett D B, Nowroozi B, Tewari P, Sayre J, Hubschman J P, Deng S, Brown E R and Grundfest W S 2015 IEEE Trans. Terahertz Sci. Technol. 5 170
[4] Castro-Camus E, Palomar M and Covarrubias A A 2013 Sci. Rep. 3 2910
[5] Park S J, Hong J T, Choi S J, Kim H S, Park W K, Han S T, Park J Y, Lee S, Kim D S and Ahn Y H 2014 Sci. Rep. 4 4988
[6] Oh S J, Kim S H, Jeong K, Park Y, Huh Y M, Son J H and Suh J S 2013 Opt. Express 21 21299
[7] Dong C, Bao R M, Zhao K, Xu C H, Jin W J and Zhong S X 2014 Chin. Phys. B 23 127802
[8] Jin W J, Li T, Zhao K and Zhao H 2013 Chin. Phys. B 22 118701
[9] Zhou Q L, Shi Y L, Zhao D M, Zhang C L, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q, Tian L and Zhao K 2011 Chin. Phys. B 20 010703
[10] Bennett D, Taylor Z D, Tewari P, Sung S, Maccabi A, Singh R, Culjat M, Grundfest W, Hubschman J P and Brown E 2012 J. Biomed. Opt. 17 097008
[11] Gabriel C, Sheppard R J and Grant E H 1983 Physics in Medicine and Biology 28 43
[12] Saviz M and Faraji-Dana R 2013 Prog. Electromag. Res. 137 389
[13] Klatt G, Gebs R, Schäfer H, Nagel M, Janke C, Bartels A and Dekorsy T 2011 IEEE Sel. Top. Quantum Electron. 17 159
[14] Yasui T, Saneyoshi E and Araki T 2005 Appl. Phys. Lett. 87 061101
[15] Wilk R, Hochrein T, Koch M, Mei M and Holzwarth R 2011 J. Opt. Soc. Am. B 28 592
[16] Yellampalle B, Kim K Y, Rodriguez G, Glownia J H and Taylor A J 2005 Appl. Phys. Lett. 87 211109
[17] Jin Y S, Jeon S G, Kim G J, Kim J I and Shon C H 2007 Rev. Sci. Instrum. 78 023101
[18] Kim G J, Jeon SG, Kim J I and Jin Y S 2008 Rev. Sci. Instrum. 79 106102
[19] Molter D, Ellrich F, Weinland T, George S, Goiran M, Keilmann F, Beigang R and Léotin J 2010 Opt. Express 18 26163
[20] Xu J Z and Zhang X C 2004 Opt. Lett. 29 2082
[21] Gente R, Born N, Voβ N, Sannemann W, Léon J, Koch M and Castro-Camus E 2013 J. Infrared Millim. Terahertz Waves 34 316
[22] Li L, Ma M, Bao B and Chen Q 2011 IEEE Trans. Plasma Sci. 39 127
[23] Sala K L, Kenney-Wallace G A and Hall G E 1980 IEEE J. Quantum Electron. QE-16 990
[24] Vieweg N, Rettich F, Deninger A, Roehle H, Dietz R, Gobel T and Schell M 2014 J. Infrared Milli. Terahz Waves 35 823
[25] Vieweg N, Krumbholz N, Hasek T, Wilk R, Bartels V, Keseberg C, Pethukhov V, Mikulics M, Wetenkamp L and Koch M 2007 Proc. SPIE 6616 66163M
[26] Liu W Q, Lu Y F, Jiao G H, Chen X F, Li J Y, Chen S H, Dong Y M and Lü J C 2016 Opt. Commum. 359 344
[27] Thrane L, Jacobsen R H, Jepsen P U and Keiding S R 1995 Chem. Phys. Lett. 240 330
[28] Pickwell E, Cole B E, Fitzgerald A J, Wallace V P and Pepper M 2004 Appl. Phys. Lett. 84 2190
[29] Bennett D B, Li W, Taylor Z D, Grundfest W S and Brown E R 2011 IEEE Sensors Journal 11 1253
[30] Rønne C, Åtrand P O and Keiding S R 1999 Phys. Rev. Lett. 82 2888
[31] Truong B C, Tuan H D, Kha H H and Nguyen H T 2013 IEEE Trans. Biomed. Eng. 60 1528
[32] Gabriel S, Lau R W and Gabriel C 1996 Physics in Medicine and Biology 41 2271
[33] Ronne C and Keiding S R 2002 Journal of Molecular Liquids 101 199
[34] Federici J F 2012 J. Infrared Millim. Terahertz Waves 33 97
[35] Xu J, Plaxco K W and Allen S J 2006 J. Chem. Phys. 124 036101
[36] Holden B O, Mcnally J J and Egan P 1988 Curr. Eye Res. 7 601
[37] Bennett D B, Taylor Z D, Tewari P, Singh R S, Culjat M O, Grundfest W S, Sassoon D J, Johnson R D, Hubschman J P and Brown E R 2011 J. Biomed. Opt. 16 057003
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!