CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles study of strain effect on the formation and electronic structures of oxygen vacancy in SrFeO2 |
Wei Zhang(张玮)1, Jie Huang(黄洁)2 |
1. Physics Group of Department of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023, China; 2. Department of Physics, Nanjing Normal University, Nanjing 210023, China |
|
|
Abstract Motivated by recent experimental observations of metallic conduction in the quasi-two-dimensional SrFeO2, we study the epitaxial strain effect on the formation and electronic structures of oxygen vacancy (Vo) by first-principles calculations. The bulk SrFeO2 is found to have the G-type antiferromagnetic ordering (G-AFM) at zero strain, which agrees with the experiment. Under compressive strain the bulk SrFeO2 keeps the G-AFM and has the trend of Mott insulator-metal transition. Different from most of the previous similar work about the strain effect on Vo, both the tensile strain and the compressive strain enhance the Vo formation. It is found that the competitions between the band energies and the electrostatic interactions are the dominant mechanisms in determining the Vo formation. We confirm that the Vo in SrFeO2 would induce the n-type conductivity where the donor levels are occupied by the delocalized dx2-y2 electrons. It is suggested that the vanishing of n-type conductivity observed by the Hall measurement on the strained films are caused by the shift of donor levels into the conduction band. These results would provide insightful information for the realization of metallic conduction in SrFeO2.
|
Received: 04 December 2015
Revised: 12 January 2016
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
61.72.jd
|
(Vacancies)
|
|
71.55.-i
|
(Impurity and defect levels)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
Fund: Project supported by the Creative Plan Project of Nanjing Forest Police College, China (Grant Nos. 201512213045xy and 201512213007x). |
Corresponding Authors:
Wei Zhang
E-mail: zhangw@nfpc.edu.cn
|
Cite this article:
Wei Zhang(张玮), Jie Huang(黄洁) First-principles study of strain effect on the formation and electronic structures of oxygen vacancy in SrFeO2 2016 Chin. Phys. B 25 057103
|
[1] |
Tsujimoto Y, Tassel C, Hayashi N, Watanabe T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C and Paulus W 2007 Nature 450 1062
|
[2] |
Inoue S, Kawai M, Shimakawa Y, Mizumaki M, Kawamura N, Watanabe T, Tsujimoto Y, Kageyama H and Yoshimura K 2008 Appl. Phys. Lett. 92 161911
|
[3] |
Wells A F 1975 Structural Inorganic Chemistry (Oxford: Oxford University Press)
|
[4] |
Xiang H J, Wei S H and Whangbo M H 2008 Phys. Rev. Lett. 100 167207
|
[5] |
Pruneda J M, Íñiguez J, Canadell E, Kageyama H and Takano M 2008 Phys. Rev. B 78 115101
|
[6] |
Kawakami T, Tsujimoto Y, Kageyama H, Chen X Q, Fu C L, Tassel C, Kitada A, Suto S, Hirama K, Sekiya Y, Makino Y, Okada T, Yagi T, Hayashi N, Yoshimura K, Nasu S, Podloucky R and Takano M 2009 Nat. Chem. 1 371
|
[7] |
Ju S and Cai T Y 2009 Appl. Phys. Lett. 94 061902
|
[8] |
Seinberg L, Yamamoto T, Tassel C, Kobayashi Y, Hayashi N, Kitada A, Sumida Y, Watanabe T, Nishi M, Ohoyama K, Yoshimura K, Takano M, Paulus W and Kageyama H 2011 Inorg. Chem. 50 3988
|
[9] |
Romero F D, Burr S J, McGrady J E, Gianolio D, Cibin G and Hayward M A 2013 J. Am. Chem. Soc. 135 1838
|
[10] |
Horigane K, Llobet A and Louca D 2014 Phys. Rev. Lett. 112 097001
|
[11] |
Lu H S, Cai T Y, Ju S and Gong C D 2015 J. Phys. Chem. C 119 17673
|
[12] |
Bouwmeester H J M 2003 Catal. Today 82 141
|
[13] |
Fleig J 2003 Annu. Rev. Mater. Res. 33 361
|
[14] |
Smith M G, Manthiram A, Zhou J, Goodenough J B and Markert J T 1991 Nature 351 549
|
[15] |
Tamura R, Kawashima N, Yamamoto T, Tassel C and Kageyama H 2011 Phys. Rev. B 84 214408
|
[16] |
Yamamoto T, Kobayashi Y, Hayashi N, Tassel C, Saito T, Yamanaka S, Takano M, Ohoyama K, Shimakawa Y, Yoshimura K and Kageyama H 2012 J. Am. Chem. Soc. 134 11444
|
[17] |
Retuerto M, Jiménz-Villacorta F, Martínez-LopeM J, Fernández-Díaz M T and Alonso J A 2011 Inorg. Chem. 50 10929
|
[18] |
Matsuyama T, Chikamatsu A, Hirose Y, Fukumura T and Hasegawa T 2011 Appl. Phys. Express 4 013001
|
[19] |
Katayama T, Chikamatsu A, Hirose Y, Kumigashira H, Fukumura T and Hasegawa T 2014 J. Phys. D: Appl. Phys. 47 135304
|
[20] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[21] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[22] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[23] |
Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
|
[24] |
Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
|
[25] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[26] |
de Walle C G V and Neugebauer J 2004 J. Appl. Phys. 95 3851
|
[27] |
Chikamatsu A, Matsuyama T, Hirose Y, Kumigashira H, Oshima M and Hasegawa T 2012 J. Electron Spectrosc. Relat. Phenom. 184 547
|
[28] |
Béa H, Bibes M, Barthélémy A, Bouzehouane K, Jacquet E, Khodan A, Contour J P, Fusil S, Wyczisk F, Forget A, Lebeugle D, Colson D and Viret M 2005 Appl. Phys. Lett. 87 072508
|
[29] |
Martin L W, Zhan Q, Suzuki Y, Ramesh R, Chi M F, Browning N, Mizoguchi T and Kreisel J 2007 Appl. Phys. Lett. 90 062903
|
[30] |
Wordenweber R K R, Hollmann E and Schubert J 2007 J. Appl. Phys. 102 044119
|
[31] |
Rahman M, Nie Y Z and Guo G H 2013 Inorg. Chem. 52 12529
|
[32] |
Chen W, Sun Q Q, Ding S J, Zhang D W and Wang L K 2006 Appl. Phys. Lett. 89 152904
|
[33] |
Lu Y B, Dai Y, Wei W, Zhu Y T and Huang B B 2013 Chem. Phys. Chem. 14 3916
|
[34] |
Zhao S J, Xue J M, Wang Y G and Yan S 2012 J. Appl. Phys. 111 043514
|
[35] |
Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A and van de Walle C G 2014 Rev. Mod. Phys. 86 253
|
[36] |
van de Walle C G and Janotti A 2011 Phys. Status Solidi B 248 19
|
[37] |
Aschauer U, Pfenninger R, Selbach S M, Grande T and Spaldin N A 2013 Phys. Rev. B 88 054111
|
[38] |
Zhu J, Liu F, Stringfellow G B and Wei S H 2010 Phys. Rev. Lett. 105 195503
|
[39] |
Yang Q, Cao J X, Ma Y, Zhou Y C, Jiang L M and Zhong X L 2013 J. Appl. Phys. 113 184110
|
[40] |
Ma D W, Lu Z S, Tang Y N, Li T X, Tang Z J and Yang Z X 2014 Phys. Lett. A 378 2570
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|