Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057103    DOI: 10.1088/1674-1056/25/5/057103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of strain effect on the formation and electronic structures of oxygen vacancy in SrFeO2

Wei Zhang(张玮)1, Jie Huang(黄洁)2
1. Physics Group of Department of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023, China;
2. Department of Physics, Nanjing Normal University, Nanjing 210023, China
Abstract  Motivated by recent experimental observations of metallic conduction in the quasi-two-dimensional SrFeO2, we study the epitaxial strain effect on the formation and electronic structures of oxygen vacancy (Vo) by first-principles calculations. The bulk SrFeO2 is found to have the G-type antiferromagnetic ordering (G-AFM) at zero strain, which agrees with the experiment. Under compressive strain the bulk SrFeO2 keeps the G-AFM and has the trend of Mott insulator-metal transition. Different from most of the previous similar work about the strain effect on Vo, both the tensile strain and the compressive strain enhance the Vo formation. It is found that the competitions between the band energies and the electrostatic interactions are the dominant mechanisms in determining the Vo formation. We confirm that the Vo in SrFeO2 would induce the n-type conductivity where the donor levels are occupied by the delocalized dx2-y2 electrons. It is suggested that the vanishing of n-type conductivity observed by the Hall measurement on the strained films are caused by the shift of donor levels into the conduction band. These results would provide insightful information for the realization of metallic conduction in SrFeO2.
Keywords:  first-principles calculations      strain      oxygen vacancy      electronic structure  
Received:  04 December 2015      Revised:  12 January 2016      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.72.jd (Vacancies)  
  71.55.-i (Impurity and defect levels)  
  75.50.Ee (Antiferromagnetics)  
Fund: Project supported by the Creative Plan Project of Nanjing Forest Police College, China (Grant Nos. 201512213045xy and 201512213007x).
Corresponding Authors:  Wei Zhang     E-mail:  zhangw@nfpc.edu.cn

Cite this article: 

Wei Zhang(张玮), Jie Huang(黄洁) First-principles study of strain effect on the formation and electronic structures of oxygen vacancy in SrFeO2 2016 Chin. Phys. B 25 057103

[1] Tsujimoto Y, Tassel C, Hayashi N, Watanabe T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C and Paulus W 2007 Nature 450 1062
[2] Inoue S, Kawai M, Shimakawa Y, Mizumaki M, Kawamura N, Watanabe T, Tsujimoto Y, Kageyama H and Yoshimura K 2008 Appl. Phys. Lett. 92 161911
[3] Wells A F 1975 Structural Inorganic Chemistry (Oxford: Oxford University Press)
[4] Xiang H J, Wei S H and Whangbo M H 2008 Phys. Rev. Lett. 100 167207
[5] Pruneda J M, Íñiguez J, Canadell E, Kageyama H and Takano M 2008 Phys. Rev. B 78 115101
[6] Kawakami T, Tsujimoto Y, Kageyama H, Chen X Q, Fu C L, Tassel C, Kitada A, Suto S, Hirama K, Sekiya Y, Makino Y, Okada T, Yagi T, Hayashi N, Yoshimura K, Nasu S, Podloucky R and Takano M 2009 Nat. Chem. 1 371
[7] Ju S and Cai T Y 2009 Appl. Phys. Lett. 94 061902
[8] Seinberg L, Yamamoto T, Tassel C, Kobayashi Y, Hayashi N, Kitada A, Sumida Y, Watanabe T, Nishi M, Ohoyama K, Yoshimura K, Takano M, Paulus W and Kageyama H 2011 Inorg. Chem. 50 3988
[9] Romero F D, Burr S J, McGrady J E, Gianolio D, Cibin G and Hayward M A 2013 J. Am. Chem. Soc. 135 1838
[10] Horigane K, Llobet A and Louca D 2014 Phys. Rev. Lett. 112 097001
[11] Lu H S, Cai T Y, Ju S and Gong C D 2015 J. Phys. Chem. C 119 17673
[12] Bouwmeester H J M 2003 Catal. Today 82 141
[13] Fleig J 2003 Annu. Rev. Mater. Res. 33 361
[14] Smith M G, Manthiram A, Zhou J, Goodenough J B and Markert J T 1991 Nature 351 549
[15] Tamura R, Kawashima N, Yamamoto T, Tassel C and Kageyama H 2011 Phys. Rev. B 84 214408
[16] Yamamoto T, Kobayashi Y, Hayashi N, Tassel C, Saito T, Yamanaka S, Takano M, Ohoyama K, Shimakawa Y, Yoshimura K and Kageyama H 2012 J. Am. Chem. Soc. 134 11444
[17] Retuerto M, Jiménz-Villacorta F, Martínez-LopeM J, Fernández-Díaz M T and Alonso J A 2011 Inorg. Chem. 50 10929
[18] Matsuyama T, Chikamatsu A, Hirose Y, Fukumura T and Hasegawa T 2011 Appl. Phys. Express 4 013001
[19] Katayama T, Chikamatsu A, Hirose Y, Kumigashira H, Fukumura T and Hasegawa T 2014 J. Phys. D: Appl. Phys. 47 135304
[20] Blöchl P E 1994 Phys. Rev. B 50 17953
[21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[23] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[24] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[25] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[26] de Walle C G V and Neugebauer J 2004 J. Appl. Phys. 95 3851
[27] Chikamatsu A, Matsuyama T, Hirose Y, Kumigashira H, Oshima M and Hasegawa T 2012 J. Electron Spectrosc. Relat. Phenom. 184 547
[28] Béa H, Bibes M, Barthélémy A, Bouzehouane K, Jacquet E, Khodan A, Contour J P, Fusil S, Wyczisk F, Forget A, Lebeugle D, Colson D and Viret M 2005 Appl. Phys. Lett. 87 072508
[29] Martin L W, Zhan Q, Suzuki Y, Ramesh R, Chi M F, Browning N, Mizoguchi T and Kreisel J 2007 Appl. Phys. Lett. 90 062903
[30] Wordenweber R K R, Hollmann E and Schubert J 2007 J. Appl. Phys. 102 044119
[31] Rahman M, Nie Y Z and Guo G H 2013 Inorg. Chem. 52 12529
[32] Chen W, Sun Q Q, Ding S J, Zhang D W and Wang L K 2006 Appl. Phys. Lett. 89 152904
[33] Lu Y B, Dai Y, Wei W, Zhu Y T and Huang B B 2013 Chem. Phys. Chem. 14 3916
[34] Zhao S J, Xue J M, Wang Y G and Yan S 2012 J. Appl. Phys. 111 043514
[35] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A and van de Walle C G 2014 Rev. Mod. Phys. 86 253
[36] van de Walle C G and Janotti A 2011 Phys. Status Solidi B 248 19
[37] Aschauer U, Pfenninger R, Selbach S M, Grande T and Spaldin N A 2013 Phys. Rev. B 88 054111
[38] Zhu J, Liu F, Stringfellow G B and Wei S H 2010 Phys. Rev. Lett. 105 195503
[39] Yang Q, Cao J X, Ma Y, Zhou Y C, Jiang L M and Zhong X L 2013 J. Appl. Phys. 113 184110
[40] Ma D W, Lu Z S, Tang Y N, Li T X, Tang Z J and Yang Z X 2014 Phys. Lett. A 378 2570
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[11] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[12] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[13] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[14] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[15] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
No Suggested Reading articles found!