PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission |
Dan Cai(蔡丹)1, Lie Liu(刘列)1, Jin-Chuan Ju(巨金川)1, Xue-Long Zhao(赵雪龙)1, Hong-Yu Zhou(周泓宇)1, Xiao Wang(王潇)2 |
1 College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China; 2 78010 PLA Troops, Chengdu 610000, China |
|
|
Abstract The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method.
|
Received: 19 September 2015
Revised: 28 October 2015
Accepted manuscript online:
|
PACS:
|
51.50.+v
|
(Electrical properties)
|
|
44.05.+e
|
(Analytical and numerical techniques)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484). |
Corresponding Authors:
Dan Cai
E-mail: nudtCAIDan@163.com
|
Cite this article:
Dan Cai(蔡丹), Lie Liu(刘列), Jin-Chuan Ju(巨金川), Xue-Long Zhao(赵雪龙), Hong-Yu Zhou(周泓宇), Xiao Wang(王潇) Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission 2016 Chin. Phys. B 25 045101
|
[1] |
deHeer W A, Chatelain A and Ugarte D 1995 Science 270 1179
|
[2] |
Tans S J, Verschueren R M and Dekker C 1998 Nature 393 49
|
[3] |
Sohn J I, Lee S, Song Y H, Choi S Y, Cho K I and Nam K S 2001 Appl. Phys. Lett. 78 901
|
[4] |
Wang Q H, Yan M and Chang R P H 2001 Appl. Phys. Lett. 78 1294
|
[5] |
Mauger M and Binh V T 2006 J. Vac. Sci. Technol. B 24 997
|
[6] |
Chernnozatonskii L A, Gulyaev Y V, Kosakovskaja Z J, Sinitsyn N I, Torgashov G V, Zakharchenko Yu F, Fedorov E A and Val'chuk V P 1995 Chem. Phys. Lett. 233 63
|
[7] |
Yue G Z, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu J P and Zhou O 2002 Appl. Phys. Lett. 81 355
|
[8] |
Zhang J, Yang G, Lee Y Z, Chang S, Lu J P and Zhou O 2006 Appl. Phys. Lett. 89 064106
|
[9] |
Kawakita K, Hata K, Sato H and Saito Y 2006 J. Vac. Sci. Technol. B 24 950
|
[10] |
Teo K B K, Minous E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J and Milne W I 2005 Nature 437 968
|
[11] |
Milne W I, Teo K B K, Minous E, Groening O, Gangloff L, Hudanski L, Schnell J P, Dieumegard D, Peauger F, Bu I Y Y, Bell M S, Legagneux P, Hasko G and Amaratunga G A J 2006 J. Vac. Sci. Technol. B 24 345
|
[12] |
Ge X J, Zhong H H, Qian B L, Zhang J, Gao L, Jin Z X, Fan Y W and Yang J H 2010 Appl. Phys. Lett. 97 101503
|
[13] |
Wu D, Shu T, Zhu J, Zhang H and Ju J 2014 Physics of Plasmas 21 073105
|
[14] |
Zhang C B, Zhang J D, Wang H G and Du G X 2015 Microelectronics Reliability 55 508
|
[15] |
Zhang C B, Wang H G, Zhang J D, Du G X and Yang J 2014 IEEE Trans. Electromagn. Compat. 56 1545
|
[16] |
Li S, Gao J M, Yang H W, Qian B L and Pan Y 2015 IEEE Trans. Plasma Sci. 43 2687
|
[17] |
Oswald R B, Mclean F B, Shallhorn D R and Buxton L O 1971 J. Appl. Phys. 42 3463
|
[18] |
Liao Q L, Zhang Y, Xia L S, Huang Y H, Qi J J, Gao Z J and Zhang H 2007 Acta Phys. Sin. 56 5335 (in Chinese)
|
[19] |
Shiffler D, Zhou O, Bower C, LaCour M and Golby K 2004 IEEE Trans. Plasma Sci. 32 2152
|
[20] |
Liao Q L, Zhang Y, Huang Y H, Qi J J, Gao Z J, Xia L S and Zhang H 2008 Acta Phys. Sin. 57 1778 (in Chinese)
|
[21] |
Liao Q L, Yang Y, Qi J J, Zhang Y, Huang Y H, Xia L S and Liu L 2010 Appl. Phys. Lett. 96 073109
|
[22] |
Liao Q L, Zhang Y, Huang Y H, Qi J J, Gao Z J, Xia L S and Zhang H 2007 Appl. Phys. Lett. 90 151504
|
[23] |
Shen Y, Xia L S, Zhang H, Yang A M, Liu X G and Liao Q L 2012 High Power Laser and Particle Beams 24 957 (in Chinese)
|
[24] |
Yang J, Shu T, Zhang J and Fan Y W 2013 J. Appl. Phys. 113 043307
|
[25] |
Nardi E, Maron Y and Hoffmann D H H 2009 Laser Part. Beams 27 355
|
[26] |
Mesyats G A 2005 Plasma Phys. Control Fusion 47 A109
|
[27] |
Coogan J J and Rose E A 1992 Appl. Phys. Lett. 60 2062
|
[28] |
Benford J, Swegle J A and Schamiloglu E 2007 High Power Microwaves (New York: Taylor and Francis) and references therein
|
[29] |
Ribaya B P, Leung J, Brown P, Rahman M and Nguyen C V 2008 Nanotechnology 19 185201
|
[30] |
Liao Q L, Yang Y, Qi J J, Huang Y H, Zhang Y, Xia L S and Liu L 2010 Europhys. Lett. 90 16006
|
[31] |
Zhang G, Chen J, Deng S Z, She J C and Xu N S 2009 Ultramicroscopy 109 385
|
[32] |
Bonard J M, Klinke C, Dean K A and Coll B F 2003 Phys. Rev. B 67 115406
|
[33] |
Wang Z L, Gao R P, deHeer W A and Poncharal P 2002 Appl. Phys. Lett. 80 856
|
[34] |
Doytcheva M, Kaiser M and Jonge N D 2006 Nanotechnology 17 3226
|
[35] |
Williams L T, Kumsomboone V S, Ready W J and Walker M L R 2010 IEEE Trans. Electron Dev. 57 3163
|
[36] |
Liang X H, Deng S Z, Xu N S, Chen J, Huang N Y and She J C 2007 J. Appl. Phys. 101 063309
|
[37] |
Wei W, Liu Y, Wei Y, Jiang K, Peng L M and Fan S 2007 Nano Lett. 7 64
|
[38] |
Chen Y, Jiang H, Li D, Song H, Li Z, Sun X, Miao G and Zhao H 2011 Nanoscale Research Letter 6 537
|
[39] |
Qin Y X 2006 “The fabrication of carbon nanotubes cold cathode and its field emission property”, Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)
|
[40] |
Nottingham W B 1936 Phys. Rev. 49 78
|
[41] |
Eletskii A V 2010 Physics-Uspekhi 53 863
|
[42] |
Anders A 2008 Cathodic Arcs: From Fractal Spots to Energetic Condensation (USA: Springer)
|
[43] |
Javey A, Guo M, Paulsson M, Wang Q, Mann D, Lundstrom M and Dai H 2004 Phys. Rev. Lett. 92 106804
|
[44] |
Pop E, Mann D, Cao J, Wang Q, Goodson K and Dai H 2005 Phys. Rev. Lett. 95 155505
|
[45] |
Yao Z, Kane C L and Dekker C 2000 Phys. Rev. Lett. 84 2941
|
[46] |
Paulini J, Klein T and Simon G 1993 J. Phys. D: Appl. Phys. 26 1310
|
[47] |
Huang N Y, She J C, Chen J, Deng S Z, Xu N S, Bishop H, Huq S E, Wang L, Zhong D Y, Wang E G and Chen D M 2004 Phys. Rev. Lett. 93 075501
|
[48] |
Fowler R H and Nordheim L 1928 Proc. R. Soc. London Ser. A 119 173
|
[49] |
Murphy W L and Good R H 1956 Phys. Rev. 102 1464
|
[50] |
Hantzsche E 1982 Beitr. Plasmaphys. 22 325
|
[51] |
Cai D and Liu L 2013 AIP Adv. 3 122103
|
[52] |
Edgcombe C J and Valdre U 2001 J. Microsc. 203 188
|
[53] |
Purcell S T, Vincent P, Journet C and Binh V T 2002 Phys. Rev. Lett. 88 105502
|
[54] |
Yi W, Lu L, Zhang D L, Pan Z W and Xie S S 1999 Phys. Rev. B 59 R9015
|
[55] |
Material parameters could be found from Wikipedia
|
[56] |
Doytcheva M, Kaiser M and de Jonge N 2006 Nanotechnology 17 3226
|
[57] |
Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
|
[58] |
Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F and Thio T 1996 Nature 382 54
|
[59] |
Xu N S and Huq S E 2005 Mater. Sci. Eng. Res. 48 47
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|