Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 045101    DOI: 10.1088/1674-1056/25/4/045101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission

Dan Cai(蔡丹)1, Lie Liu(刘列)1, Jin-Chuan Ju(巨金川)1, Xue-Long Zhao(赵雪龙)1, Hong-Yu Zhou(周泓宇)1, Xiao Wang(王潇)2
1 College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China;
2 78010 PLA Troops, Chengdu 610000, China
Abstract  The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method.
Keywords:  carbon nanotube      thermal field electron emission      vacuum breakdown      failure mechanism  
Received:  19 September 2015      Revised:  28 October 2015      Accepted manuscript online: 
PACS:  51.50.+v (Electrical properties)  
  44.05.+e (Analytical and numerical techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484).
Corresponding Authors:  Dan Cai     E-mail:  nudtCAIDan@163.com

Cite this article: 

Dan Cai(蔡丹), Lie Liu(刘列), Jin-Chuan Ju(巨金川), Xue-Long Zhao(赵雪龙), Hong-Yu Zhou(周泓宇), Xiao Wang(王潇) Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission 2016 Chin. Phys. B 25 045101

[1] deHeer W A, Chatelain A and Ugarte D 1995 Science 270 1179
[2] Tans S J, Verschueren R M and Dekker C 1998 Nature 393 49
[3] Sohn J I, Lee S, Song Y H, Choi S Y, Cho K I and Nam K S 2001 Appl. Phys. Lett. 78 901
[4] Wang Q H, Yan M and Chang R P H 2001 Appl. Phys. Lett. 78 1294
[5] Mauger M and Binh V T 2006 J. Vac. Sci. Technol. B 24 997
[6] Chernnozatonskii L A, Gulyaev Y V, Kosakovskaja Z J, Sinitsyn N I, Torgashov G V, Zakharchenko Yu F, Fedorov E A and Val'chuk V P 1995 Chem. Phys. Lett. 233 63
[7] Yue G Z, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu J P and Zhou O 2002 Appl. Phys. Lett. 81 355
[8] Zhang J, Yang G, Lee Y Z, Chang S, Lu J P and Zhou O 2006 Appl. Phys. Lett. 89 064106
[9] Kawakita K, Hata K, Sato H and Saito Y 2006 J. Vac. Sci. Technol. B 24 950
[10] Teo K B K, Minous E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J and Milne W I 2005 Nature 437 968
[11] Milne W I, Teo K B K, Minous E, Groening O, Gangloff L, Hudanski L, Schnell J P, Dieumegard D, Peauger F, Bu I Y Y, Bell M S, Legagneux P, Hasko G and Amaratunga G A J 2006 J. Vac. Sci. Technol. B 24 345
[12] Ge X J, Zhong H H, Qian B L, Zhang J, Gao L, Jin Z X, Fan Y W and Yang J H 2010 Appl. Phys. Lett. 97 101503
[13] Wu D, Shu T, Zhu J, Zhang H and Ju J 2014 Physics of Plasmas 21 073105
[14] Zhang C B, Zhang J D, Wang H G and Du G X 2015 Microelectronics Reliability 55 508
[15] Zhang C B, Wang H G, Zhang J D, Du G X and Yang J 2014 IEEE Trans. Electromagn. Compat. 56 1545
[16] Li S, Gao J M, Yang H W, Qian B L and Pan Y 2015 IEEE Trans. Plasma Sci. 43 2687
[17] Oswald R B, Mclean F B, Shallhorn D R and Buxton L O 1971 J. Appl. Phys. 42 3463
[18] Liao Q L, Zhang Y, Xia L S, Huang Y H, Qi J J, Gao Z J and Zhang H 2007 Acta Phys. Sin. 56 5335 (in Chinese)
[19] Shiffler D, Zhou O, Bower C, LaCour M and Golby K 2004 IEEE Trans. Plasma Sci. 32 2152
[20] Liao Q L, Zhang Y, Huang Y H, Qi J J, Gao Z J, Xia L S and Zhang H 2008 Acta Phys. Sin. 57 1778 (in Chinese)
[21] Liao Q L, Yang Y, Qi J J, Zhang Y, Huang Y H, Xia L S and Liu L 2010 Appl. Phys. Lett. 96 073109
[22] Liao Q L, Zhang Y, Huang Y H, Qi J J, Gao Z J, Xia L S and Zhang H 2007 Appl. Phys. Lett. 90 151504
[23] Shen Y, Xia L S, Zhang H, Yang A M, Liu X G and Liao Q L 2012 High Power Laser and Particle Beams 24 957 (in Chinese)
[24] Yang J, Shu T, Zhang J and Fan Y W 2013 J. Appl. Phys. 113 043307
[25] Nardi E, Maron Y and Hoffmann D H H 2009 Laser Part. Beams 27 355
[26] Mesyats G A 2005 Plasma Phys. Control Fusion 47 A109
[27] Coogan J J and Rose E A 1992 Appl. Phys. Lett. 60 2062
[28] Benford J, Swegle J A and Schamiloglu E 2007 High Power Microwaves (New York: Taylor and Francis) and references therein
[29] Ribaya B P, Leung J, Brown P, Rahman M and Nguyen C V 2008 Nanotechnology 19 185201
[30] Liao Q L, Yang Y, Qi J J, Huang Y H, Zhang Y, Xia L S and Liu L 2010 Europhys. Lett. 90 16006
[31] Zhang G, Chen J, Deng S Z, She J C and Xu N S 2009 Ultramicroscopy 109 385
[32] Bonard J M, Klinke C, Dean K A and Coll B F 2003 Phys. Rev. B 67 115406
[33] Wang Z L, Gao R P, deHeer W A and Poncharal P 2002 Appl. Phys. Lett. 80 856
[34] Doytcheva M, Kaiser M and Jonge N D 2006 Nanotechnology 17 3226
[35] Williams L T, Kumsomboone V S, Ready W J and Walker M L R 2010 IEEE Trans. Electron Dev. 57 3163
[36] Liang X H, Deng S Z, Xu N S, Chen J, Huang N Y and She J C 2007 J. Appl. Phys. 101 063309
[37] Wei W, Liu Y, Wei Y, Jiang K, Peng L M and Fan S 2007 Nano Lett. 7 64
[38] Chen Y, Jiang H, Li D, Song H, Li Z, Sun X, Miao G and Zhao H 2011 Nanoscale Research Letter 6 537
[39] Qin Y X 2006 “The fabrication of carbon nanotubes cold cathode and its field emission property”, Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)
[40] Nottingham W B 1936 Phys. Rev. 49 78
[41] Eletskii A V 2010 Physics-Uspekhi 53 863
[42] Anders A 2008 Cathodic Arcs: From Fractal Spots to Energetic Condensation (USA: Springer)
[43] Javey A, Guo M, Paulsson M, Wang Q, Mann D, Lundstrom M and Dai H 2004 Phys. Rev. Lett. 92 106804
[44] Pop E, Mann D, Cao J, Wang Q, Goodson K and Dai H 2005 Phys. Rev. Lett. 95 155505
[45] Yao Z, Kane C L and Dekker C 2000 Phys. Rev. Lett. 84 2941
[46] Paulini J, Klein T and Simon G 1993 J. Phys. D: Appl. Phys. 26 1310
[47] Huang N Y, She J C, Chen J, Deng S Z, Xu N S, Bishop H, Huq S E, Wang L, Zhong D Y, Wang E G and Chen D M 2004 Phys. Rev. Lett. 93 075501
[48] Fowler R H and Nordheim L 1928 Proc. R. Soc. London Ser. A 119 173
[49] Murphy W L and Good R H 1956 Phys. Rev. 102 1464
[50] Hantzsche E 1982 Beitr. Plasmaphys. 22 325
[51] Cai D and Liu L 2013 AIP Adv. 3 122103
[52] Edgcombe C J and Valdre U 2001 J. Microsc. 203 188
[53] Purcell S T, Vincent P, Journet C and Binh V T 2002 Phys. Rev. Lett. 88 105502
[54] Yi W, Lu L, Zhang D L, Pan Z W and Xie S S 1999 Phys. Rev. B 59 R9015
[55] Material parameters could be found from Wikipedia
[56] Doytcheva M, Kaiser M and de Jonge N 2006 Nanotechnology 17 3226
[57] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[58] Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F and Thio T 1996 Nature 382 54
[59] Xu N S and Huq S E 2005 Mater. Sci. Eng. Res. 48 47
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[7] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[8] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[9] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[10] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[11] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[12] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[13] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[14] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[15] Full filling of mesoporous carbon nanotubes by aqueous solution at room temperature
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(3): 036801.
No Suggested Reading articles found!