CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling |
Peng Zhang(张鹏), Jing Wang(王静), Xiang-Mei Duan(段香梅) |
Department of Physics, Faculty of Science, Ningbo University, Ningbo 315211, China |
|
|
Abstract We have studied the structural and electronic properties of a hybrid hexagonal boron nitride with phosphorene nanocomposite using ab initio density functional calculations. It is found that the interaction between the hexagonal boron nitride and phosphorene is dominated by the weak van der Waals interaction, with their own intrinsic electronic properties preserved. Furthermore, the band gap of the nanocomposite is dependent on the interfacial distance. Our results could shed light on the design of new devices based on van der Waals heterostructure.
|
Received: 03 November 2015
Revised: 16 December 2015
Accepted manuscript online:
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
Fund: Projected supported by the National Natural Science Foundation of China (Grant No. 11574167), the New Century 151 Talents Project of Zhejiang Province, China, and the K. C. Wong Magna Foundation in Ningbo University, China. |
Corresponding Authors:
Xiang-Mei Duan
E-mail: duanxiangmei@nbu.edu.cn
|
Cite this article:
Peng Zhang(张鹏), Jing Wang(王静), Xiang-Mei Duan(段香梅) Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling 2016 Chin. Phys. B 25 037302
|
[1] |
Coleman J N, Lotya M, Bergin S D, et al. 2011 Science 331 568
|
[2] |
Li L, Yu Y,Ge Q, Ou X, Wu H, Feng D, Chen X and Zhang Y 2014 Nat. Nanotechnol. 9 372
|
[3] |
Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
|
[4] |
Jiang J W and Park H S 2014 Nat. Commun. 5 4727
|
[5] |
Yu G, Lü X, Jiang L, Gao W and Zheng Y 2013 J. Phys. D: Appl. Phys. 46 375303
|
[6] |
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
|
[7] |
Ramasubramaniam A, Naveh D and Towe E 2011 Phys. Rev. B 84 205325
|
[8] |
Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411
|
[9] |
Bao Q and Loh K P 2012 ACS Nano 6 3677
|
[10] |
Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 3 404
|
[11] |
Wirtz L, Marini A and Rubio A 2006 Phys. Rev. Lett. 96 126104
|
[12] |
Ribeiro R M and Peres N M R 2011 Phys. Rev. B 83 235312
|
[13] |
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
|
[14] |
Quhe R, Zheng J, Luo G, Qin R, Zhou J, Yu D, Nagase S, Mei W N and Gao Z 2012 NPG Asia. Mater. 4 e6
|
[15] |
Ramasubramaniam A, Naveh D and Towe E 2011 Nano Lett. 11 1070
|
[16] |
Appalakondaiah S, Vaitheeswaran G, Lebegue S, Christensen N E and Svane A 2012 Phys. Rev. B 86 035105
|
[17] |
Li Y, Yang S and Li J 2014 J. Phys. Chem. C 118 23970
|
[18] |
Guan J, Zhu Z and Tománek D 2014 Phys. Rev. Lett. 113 046804
|
[19] |
Rodin A S, Carvalho A and Neto A H C 2014 Phys. Rev. Lett. 112 176801
|
[20] |
Liu Q, Zhang X, Abdalla L B, Fazzio A and Zunger A 2015 Nano Lett. 15 1222
|
[21] |
Li W, Yang Y, Zhang G and Zhang Y W 2015 Nano Lett. 15 1691
|
[22] |
Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
|
[23] |
Hu T and Hong J 2015 ACS. Appl. Mater. Inter. 7 23489
|
[24] |
Gao G, Gao W, Cannuccia E, Taha-Tijerina J, Balicas L, Mathkar A, Narayanan T N, Liu Z, Gupta B K and Peng J 2012 Nano Lett. 12 3518
|
[25] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[26] |
Hamm J M and Hess O 2013 Science 340 1298
|
[27] |
Padilha J E, Fazzio A and da Silva A J R 2015 Phys. Rev. Lett. 114 066803
|
[28] |
Furchi M M, Pospischil A, Libisch F, Burgdörfer J and Mueller T 2014 Nano Lett. 14 4785
|
[29] |
Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
|
[30] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[31] |
Yuan J, Najmaei S, Zhang Z, Zhang J, Lei S, M.Ajayan P, Yakobson B I and Lou J 2015 ACS Nano 9 555
|
[32] |
Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X and Ye P D 2014 ACS Nano 8 8292
|
[33] |
Shih C J, Wang Q H, Son Y, Jin Z, Blankschtein D and Strano M S 2014 ACS Nano 8 5790
|
[34] |
Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C C and Javey A 2014 ACS Nano 8 6259
|
[35] |
Hu W, Wang T and Yang J 2015 J. Mater. Chem. C 3 4756
|
[36] |
Guo H, Lu N, Dai J, Wu X and Zeng X C 2014 J. Phys. Chem. C 118 14051
|
[37] |
Lee H U, Lee S C, Won J, Son B C, Choi S, Kim Y, Park S Y, Kim H S, Lee Y C and Lee J 2015 Sci. Rep. 5 8691
|
[38] |
Doganov R A, Koenig S P, Yeo Y, Watanabe K, Taniguchi T and Özyilmaz B 2015 Appl. Phys. Lett. 106 083505
|
[39] |
Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
|
[40] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[41] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[42] |
Blöchl P E 1994 Phys. Rev. B 50 179532
|
[43] |
Klimes J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 50 022201
|
[44] |
Klimes J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
|
[45] |
To benchmark our structure calculation, we have determined the lattice parameters of the black phosphorus bulk with optB88-vdw; for the lattice constants, we obtain a = 4.45 Å, b = 3.33 Å, c= 10.63 Å, in good agreement with the experimental values (a = 4.38 Å, b= 3.31 Å, and c =10.48$ Å).
|
[46] |
Graziano G, Klimë J, Fernandez-Alonso F and Michaelides A 2012 J. Phys. Condens. Matter 24 424216
|
[47] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[48] |
Berseneva N, Gulans A, Krasheninnikov A V and Nieminen R M 2013 Phys. Rev. B 87 035404
|
[49] |
Hu W, Li Z and Yang J 2013 J. Chem. Phys. 139 154704
|
[50] |
Giovannetti G, Khomyakov P A, Brocks G Karpan V M, Van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
|
[51] |
Gong C, Lee G, Shan B, Vogel E M, Wallace R M and Cho K 2010 J. Appl. Phys. 108 123711
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|