Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037302    DOI: 10.1088/1674-1056/25/3/037302

Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling

Peng Zhang(张鹏), Jing Wang(王静), Xiang-Mei Duan(段香梅)
Department of Physics, Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  We have studied the structural and electronic properties of a hybrid hexagonal boron nitride with phosphorene nanocomposite using ab initio density functional calculations. It is found that the interaction between the hexagonal boron nitride and phosphorene is dominated by the weak van der Waals interaction, with their own intrinsic electronic properties preserved. Furthermore, the band gap of the nanocomposite is dependent on the interfacial distance. Our results could shed light on the design of new devices based on van der Waals heterostructure.
Keywords:  density functional theory      hexagonal boron nitride      nanocomposite      phosphorene  
Received:  03 November 2015      Revised:  16 December 2015      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Nr (Semiconductor compounds)  
Fund: Projected supported by the National Natural Science Foundation of China (Grant No. 11574167), the New Century 151 Talents Project of Zhejiang Province, China, and the K. C. Wong Magna Foundation in Ningbo University, China.
Corresponding Authors:  Xiang-Mei Duan     E-mail:

Cite this article: 

Peng Zhang(张鹏), Jing Wang(王静), Xiang-Mei Duan(段香梅) Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling 2016 Chin. Phys. B 25 037302

[1] Coleman J N, Lotya M, Bergin S D, et al. 2011 Science 331 568
[2] Li L, Yu Y,Ge Q, Ou X, Wu H, Feng D, Chen X and Zhang Y 2014 Nat. Nanotechnol. 9 372
[3] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[4] Jiang J W and Park H S 2014 Nat. Commun. 5 4727
[5] Yu G, Lü X, Jiang L, Gao W and Zheng Y 2013 J. Phys. D: Appl. Phys. 46 375303
[6] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[7] Ramasubramaniam A, Naveh D and Towe E 2011 Phys. Rev. B 84 205325
[8] Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411
[9] Bao Q and Loh K P 2012 ACS Nano 6 3677
[10] Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 3 404
[11] Wirtz L, Marini A and Rubio A 2006 Phys. Rev. Lett. 96 126104
[12] Ribeiro R M and Peres N M R 2011 Phys. Rev. B 83 235312
[13] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[14] Quhe R, Zheng J, Luo G, Qin R, Zhou J, Yu D, Nagase S, Mei W N and Gao Z 2012 NPG Asia. Mater. 4 e6
[15] Ramasubramaniam A, Naveh D and Towe E 2011 Nano Lett. 11 1070
[16] Appalakondaiah S, Vaitheeswaran G, Lebegue S, Christensen N E and Svane A 2012 Phys. Rev. B 86 035105
[17] Li Y, Yang S and Li J 2014 J. Phys. Chem. C 118 23970
[18] Guan J, Zhu Z and Tománek D 2014 Phys. Rev. Lett. 113 046804
[19] Rodin A S, Carvalho A and Neto A H C 2014 Phys. Rev. Lett. 112 176801
[20] Liu Q, Zhang X, Abdalla L B, Fazzio A and Zunger A 2015 Nano Lett. 15 1222
[21] Li W, Yang Y, Zhang G and Zhang Y W 2015 Nano Lett. 15 1691
[22] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[23] Hu T and Hong J 2015 ACS. Appl. Mater. Inter. 7 23489
[24] Gao G, Gao W, Cannuccia E, Taha-Tijerina J, Balicas L, Mathkar A, Narayanan T N, Liu Z, Gupta B K and Peng J 2012 Nano Lett. 12 3518
[25] Geim A K and Grigorieva I V 2013 Nature 499 419
[26] Hamm J M and Hess O 2013 Science 340 1298
[27] Padilha J E, Fazzio A and da Silva A J R 2015 Phys. Rev. Lett. 114 066803
[28] Furchi M M, Pospischil A, Libisch F, Burgdörfer J and Mueller T 2014 Nano Lett. 14 4785
[29] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
[30] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[31] Yuan J, Najmaei S, Zhang Z, Zhang J, Lei S, M.Ajayan P, Yakobson B I and Lou J 2015 ACS Nano 9 555
[32] Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X and Ye P D 2014 ACS Nano 8 8292
[33] Shih C J, Wang Q H, Son Y, Jin Z, Blankschtein D and Strano M S 2014 ACS Nano 8 5790
[34] Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C C and Javey A 2014 ACS Nano 8 6259
[35] Hu W, Wang T and Yang J 2015 J. Mater. Chem. C 3 4756
[36] Guo H, Lu N, Dai J, Wu X and Zeng X C 2014 J. Phys. Chem. C 118 14051
[37] Lee H U, Lee S C, Won J, Son B C, Choi S, Kim Y, Park S Y, Kim H S, Lee Y C and Lee J 2015 Sci. Rep. 5 8691
[38] Doganov R A, Koenig S P, Yeo Y, Watanabe K, Taniguchi T and Özyilmaz B 2015 Appl. Phys. Lett. 106 083505
[39] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Blöchl P E 1994 Phys. Rev. B 50 179532
[43] Klimes J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 50 022201
[44] Klimes J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[45] To benchmark our structure calculation, we have determined the lattice parameters of the black phosphorus bulk with optB88-vdw; for the lattice constants, we obtain a = 4.45 Å, b = 3.33 Å, c= 10.63 Å, in good agreement with the experimental values (a = 4.38 Å, b= 3.31 Å, and c =10.48$ Å).
[46] Graziano G, Klimë J, Fernandez-Alonso F and Michaelides A 2012 J. Phys. Condens. Matter 24 424216
[47] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[48] Berseneva N, Gulans A, Krasheninnikov A V and Nieminen R M 2013 Phys. Rev. B 87 035404
[49] Hu W, Li Z and Yang J 2013 J. Chem. Phys. 139 154704
[50] Giovannetti G, Khomyakov P A, Brocks G Karpan V M, Van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[51] Gong C, Lee G, Shan B, Vogel E M, Wallace R M and Cho K 2010 J. Appl. Phys. 108 123711
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
No Suggested Reading articles found!