Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 036104    DOI: 10.1088/1674-1056/25/3/036104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Energetics of carbon and nitrogen impurities and their interactions with vacancy in vanadium

Juan Hua(华娟)1,2, Yue-Lin Liu(刘悦林)2, Heng-Shuai Li(李恒帅)1,3,Ming-Wen Zhao(赵明文)1, Xiang-Dong Liu(刘向东)1
1. School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
2. Department of Physics, Yantai University, Yantai 264005, China;
3. School of Mechanical & Automotive Engineering, Liaocheng University, Liaocheng 252059, China
Abstract  We studied the energetic behaviors of interstitial and substitution carbon (C)/nitrogen (N) impurities as well as their interactions with the vacancy in vanadium by first-principles simulations. Both C and N impurities prefer the octahedral site (O-site). N exhibits a lower formation energy than C. Due to the hybridization between vanadium-d and N/C-p, the N-p states are located at the energy from-6.00 eV to-5.00 eV, which is much deeper than that from-5.00 eV to-3.00 eV for the C-p states. Two impurities in bulk vanadium, C-C, C-N, and N-N can be paired up at the two neighboring O-sites along the <111> direction and the binding energies of the pairs are 0.227 eV, 0.162 eV, and 0.201 eV, respectively. Further, we find that both C and N do not prefer to stay at the vacancy center and its vicinity, but occupy the O-site off the vacancy in the interstitial lattice in vanadium. The possible physical mechanism is that C/N in the O-site tends to form a carbide/nitride-like structure with its neighboring vanadium atoms, leading to the formation of the strong C/N-vanadium bonding containing a covalent component.
Keywords:  vanadium      carbon/nitrogen      vacancy      first-principles  
Received:  22 September 2015      Revised:  19 November 2015      Accepted manuscript online: 
PACS:  61.82.Bg (Metals and alloys)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  66.30.J- (Diffusion of impurities ?)  
  64.75.Bc (Solubility)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575153 and 11375108).
Corresponding Authors:  Xiang-Dong Liu     E-mail:  xdliu@sdu.edu.cn

Cite this article: 

Juan Hua(华娟), Yue-Lin Liu(刘悦林), Heng-Shuai Li(李恒帅),Ming-Wen Zhao(赵明文), Xiang-Dong Liu(刘向东) Energetics of carbon and nitrogen impurities and their interactions with vacancy in vanadium 2016 Chin. Phys. B 25 036104

[1] Stoneham A M, Matthews J R and Ford I J 2004 J. Phys.: Condens. Matter 16 S2597
[2] Suri A K, Krishnamurthy N and Batra I S 2010 J. Phys.: Conf. Ser. 208 012001
[3] Liu Y L, Zhang Y, Hong R J and Lu G H 2009 Chin. Phys. B 18 1923
[4] Liu Y L, Jin S and Zhang Y 2012 Chin. Phys. B 21 016105
[5] Liu Y L, Lu W, Gao A Y, Gui L J and Zhang Y 2012 Chin. Phys. B 21 126103
[6] Liu Y L, Gao A Y, Lu W, Zhou H B and Zhang Y 2012 Chin. Phys. Lett. 29 077101
[7] Li Y F, Shen T L and Gao X 2013 Chin. Phys. Lett. 30 126101
[8] Liu G D, Liu E K and Luo H Z 2015 Acta Phys. Sin. 64 077104 (in Chinese)
[9] Cheng C Q, Li G, Zhang W D, Li P W, Hu J, Sang S B and Deng X 2015 Acta Phys. Sin. 64 067102 (in Chinese)
[10] Wang T, Wu R L and Yu H 2015 Chin. Phys. B 24 038102
[11] Zhang L, Zhang Y, Geng W T and Lu G H 2012 Europhys. Lett. 98 17001
[12] Zhou H B, Jin S, Shu X L, Zhang Ying, Lu G H and Liu F 2011 Europhys. Lett. 96 66001
[13] Zhou H B, Liu Y L, Duan C, Jin S, Zhang Y, Gao F, Shu X L and Lu G H 2011 J. Appl. Phys. 109 113512
[14] Zhang L, Shu X L, Jin S, Zhang Y and Lu G H 2010 J. Phys.: Condens. Matter 22 375401
[15] Liu Y L, Zhang Y, Hong R J and Lu G H 2009 Chin. Phys.B 18 1674
[16] Satou M, Abe K and Kayano H 1991 J. Nucl. Mater. 179-181 757
[17] Rowcliffe A F, Zinkle S J and Hoelzer D T 2000 J. Nucl. Mater. 283-287 508
[18] Kurtz R J and Hamilton M L 2000 J. Nucl. Mater. 283-287 628
[19] Muroga T, Gasparotto M and Zinkle S J 2002 Fusion Eng. Des. 61-62 13
[20] Matsui H, Fukumoto K, Smith D L and Chung H M 1996 J. Nucl. Mater. 233-237 92
[21] Muroga T, Nagasaka T, Abe K, Chernov V M, Matsui H, Smith D L, Xu Z Y and Zinkle S J 2002 J. Nucl. Mater. 307-311 547
[22] Diercks D R and Loomis B A 1986 J. Nucl. Mater. 141-143 1117
[23] Oku D, Yamada T, Hirohata Y, Yamauchi Y and Hino T 2007 J. Nucl. Mater. 367-370 864
[24] Nita N, Miyawaki K and Matsui H 2007 J. Nucl. Mater. 367-370 505
[25] Kameda J, Bloomer T E and Lyu D Y 1998 J. Nucl. Mater. 258-263 1482
[26] Li R H, Zhang P B, Li X Q, Zhang C, Zhao J J 2013 J. Nucl. Mater. 435 71
[27] Fujita F and Damask A 1964 Acta Metall. 12 331
[28] Vehanen A, Hautojarvi P, Johansson J, Yli-Kauppila J and Moser P 1982 Phys. Rev. B 25 762
[29] Takaki S, Fuss J, Kuglers H, Dedek U and Schultz H 1983 Radiat. Eff. 79 87
[30] Nikolaev A L and Kurennykh T E 2011 J. Nucl. Mater. 414 374
[31] Domain C and Becquart C S and Foct J 2004 Phys. Rev. B 69 144112
[32] Fu C L, Krcmar M, Painter G S and Chen X Q 2007 Phys. Rev. Lett. 99 225502
[33] Jiang Y, Smith J R and Odette G R 2009 Phys. Rev. B 79 064103
[34] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Blochl P E 1994 Phys. Rev. B 50 17953
[39] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[40] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[41] Pozzo M and Alfe D 2009 Int. J. Hydrog. Energy 34 1922
[42] Kittel C 1996 Introduction to Solid State Physics (New York: Wiley) pp. 144-164
[43] Jahnatek M, Krajc M and Hafner J 2005 Phys. Rev. B 71 024101
[44] Verma A K and Modak P 2008 Europhys. Lett. 81 37003
[45] Jiang D E and Carter E A 2003 Phys. Rev. B 67 214103
[46] Barouh C, Schuler T, Fu C C and Nastar M 2014 Phys. Rev. B 90 054112
[47] Zhang P B, Zhao J J, Qin Y and Wen B 2011 J. Nucl. Mater. 413 90
[48] Zhang P B, Zhao J J, Qin Y and Wen B 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1735
[49] Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverria J, Cremades E, Barragan F and Alvarez S 2008 Dalton Trans. 28 32
[50] Hu Q M, Xu D S, Yang R, Li D and Wu W T 2003 Philosophical Magazine 83 217
[51] Hu Q M, Xu D S, Yang R, Li D and Wu W T 2002 Phys. Rev. B 66 064201
[52] Liu Y L, Zhou H B, Zhang Y, Lu G H and Luo G N 2011 Comp. Mater. Sci. 50 3213
[53] Liu Y L, Zhou H B, Zhang Y and Duan C 2012 Comp. Mater. Sci. 62 282
[54] Li X C, Shu X L, Liu Y N, Gao F and Lu G H 2011 J. Nucl. Mater. 408 12
[55] Zhou H B, Jin S, Zhang Y and Lu G H 2011 Progress in Natural Science: Materials International 21 240
[56] Zhou H B, Jin S, Zhang Y, Lu G H and Liu F 2012 Phys. Rev. Lett. 109 135502
[57] Zhang L, Zhang Y, Geng W T and Lu G H 2012 Europhys. Lett. 98 17001
[58] Li X C, Shu X L, Liu Y N, Yu Y, Gao F and Lu G H 2012 J. Nucl. Mater. 426 31
[59] Zhou H B, Jin S, Shu X L, Zhang Y, Lu G H and Liu F 2011 Europhys. Lett. 96 66001
[60] Lu G H, Wang Q and Liu F 2008 Appl. Phys. Lett. 92 211906
[61] Wei Y, Zhou H B, Zhang Y, Lu G H and Xu H B 2011 J. Phys.: Condens. Matter 23 225504
[62] Hu X L, Liu L H, Zhang Y, Lu G H and Wang T M 2011 J. Phys.: Condens. Matter 23 025501
[63] Zhou H B, Jin S, Zhang Y and Lu G H 2011 Science China Physics, Mechanics & Astronomy 54 2164
[64] Toth L E, Zbasnik J, Sato Y and Gardner W 1968 Anisotropy in Single-Crystal Refractory Compounds (New York: Plenum) pp. 249-266
[65] Lye R G 1967 Atomic and Electronic Structure of Metals (Ohio: American Society for Metals Metals) p. 99
[66] Toth L E 1971 Transition Metal Carbides and Nitrides (New York: Academic) pp. 12069-12073
[67] Storms E K 1967 The Refractory Carbides (New York: Academic) pp. 464-484
[68] Froidevaux D and Rossier D 1967 J. Phys. Chem. Solids 28 1197
[69] Fu C L, Krcmar Maja, Painter G S and Chen X Q 2007 Phys. Rev. Lett. 99 225502
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
No Suggested Reading articles found!