CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Energetics of carbon and nitrogen impurities and their interactions with vacancy in vanadium |
Juan Hua(华娟)1,2, Yue-Lin Liu(刘悦林)2, Heng-Shuai Li(李恒帅)1,3,Ming-Wen Zhao(赵明文)1, Xiang-Dong Liu(刘向东)1 |
1. School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; 2. Department of Physics, Yantai University, Yantai 264005, China; 3. School of Mechanical & Automotive Engineering, Liaocheng University, Liaocheng 252059, China |
|
|
Abstract We studied the energetic behaviors of interstitial and substitution carbon (C)/nitrogen (N) impurities as well as their interactions with the vacancy in vanadium by first-principles simulations. Both C and N impurities prefer the octahedral site (O-site). N exhibits a lower formation energy than C. Due to the hybridization between vanadium-d and N/C-p, the N-p states are located at the energy from-6.00 eV to-5.00 eV, which is much deeper than that from-5.00 eV to-3.00 eV for the C-p states. Two impurities in bulk vanadium, C-C, C-N, and N-N can be paired up at the two neighboring O-sites along the <111> direction and the binding energies of the pairs are 0.227 eV, 0.162 eV, and 0.201 eV, respectively. Further, we find that both C and N do not prefer to stay at the vacancy center and its vicinity, but occupy the O-site off the vacancy in the interstitial lattice in vanadium. The possible physical mechanism is that C/N in the O-site tends to form a carbide/nitride-like structure with its neighboring vanadium atoms, leading to the formation of the strong C/N-vanadium bonding containing a covalent component.
|
Received: 22 September 2015
Revised: 19 November 2015
Accepted manuscript online:
|
PACS:
|
61.82.Bg
|
(Metals and alloys)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
66.30.J-
|
(Diffusion of impurities ?)
|
|
64.75.Bc
|
(Solubility)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575153 and 11375108). |
Corresponding Authors:
Xiang-Dong Liu
E-mail: xdliu@sdu.edu.cn
|
Cite this article:
Juan Hua(华娟), Yue-Lin Liu(刘悦林), Heng-Shuai Li(李恒帅),Ming-Wen Zhao(赵明文), Xiang-Dong Liu(刘向东) Energetics of carbon and nitrogen impurities and their interactions with vacancy in vanadium 2016 Chin. Phys. B 25 036104
|
[1] |
Stoneham A M, Matthews J R and Ford I J 2004 J. Phys.: Condens. Matter 16 S2597
|
[2] |
Suri A K, Krishnamurthy N and Batra I S 2010 J. Phys.: Conf. Ser. 208 012001
|
[3] |
Liu Y L, Zhang Y, Hong R J and Lu G H 2009 Chin. Phys. B 18 1923
|
[4] |
Liu Y L, Jin S and Zhang Y 2012 Chin. Phys. B 21 016105
|
[5] |
Liu Y L, Lu W, Gao A Y, Gui L J and Zhang Y 2012 Chin. Phys. B 21 126103
|
[6] |
Liu Y L, Gao A Y, Lu W, Zhou H B and Zhang Y 2012 Chin. Phys. Lett. 29 077101
|
[7] |
Li Y F, Shen T L and Gao X 2013 Chin. Phys. Lett. 30 126101
|
[8] |
Liu G D, Liu E K and Luo H Z 2015 Acta Phys. Sin. 64 077104 (in Chinese)
|
[9] |
Cheng C Q, Li G, Zhang W D, Li P W, Hu J, Sang S B and Deng X 2015 Acta Phys. Sin. 64 067102 (in Chinese)
|
[10] |
Wang T, Wu R L and Yu H 2015 Chin. Phys. B 24 038102
|
[11] |
Zhang L, Zhang Y, Geng W T and Lu G H 2012 Europhys. Lett. 98 17001
|
[12] |
Zhou H B, Jin S, Shu X L, Zhang Ying, Lu G H and Liu F 2011 Europhys. Lett. 96 66001
|
[13] |
Zhou H B, Liu Y L, Duan C, Jin S, Zhang Y, Gao F, Shu X L and Lu G H 2011 J. Appl. Phys. 109 113512
|
[14] |
Zhang L, Shu X L, Jin S, Zhang Y and Lu G H 2010 J. Phys.: Condens. Matter 22 375401
|
[15] |
Liu Y L, Zhang Y, Hong R J and Lu G H 2009 Chin. Phys.B 18 1674
|
[16] |
Satou M, Abe K and Kayano H 1991 J. Nucl. Mater. 179-181 757
|
[17] |
Rowcliffe A F, Zinkle S J and Hoelzer D T 2000 J. Nucl. Mater. 283-287 508
|
[18] |
Kurtz R J and Hamilton M L 2000 J. Nucl. Mater. 283-287 628
|
[19] |
Muroga T, Gasparotto M and Zinkle S J 2002 Fusion Eng. Des. 61-62 13
|
[20] |
Matsui H, Fukumoto K, Smith D L and Chung H M 1996 J. Nucl. Mater. 233-237 92
|
[21] |
Muroga T, Nagasaka T, Abe K, Chernov V M, Matsui H, Smith D L, Xu Z Y and Zinkle S J 2002 J. Nucl. Mater. 307-311 547
|
[22] |
Diercks D R and Loomis B A 1986 J. Nucl. Mater. 141-143 1117
|
[23] |
Oku D, Yamada T, Hirohata Y, Yamauchi Y and Hino T 2007 J. Nucl. Mater. 367-370 864
|
[24] |
Nita N, Miyawaki K and Matsui H 2007 J. Nucl. Mater. 367-370 505
|
[25] |
Kameda J, Bloomer T E and Lyu D Y 1998 J. Nucl. Mater. 258-263 1482
|
[26] |
Li R H, Zhang P B, Li X Q, Zhang C, Zhao J J 2013 J. Nucl. Mater. 435 71
|
[27] |
Fujita F and Damask A 1964 Acta Metall. 12 331
|
[28] |
Vehanen A, Hautojarvi P, Johansson J, Yli-Kauppila J and Moser P 1982 Phys. Rev. B 25 762
|
[29] |
Takaki S, Fuss J, Kuglers H, Dedek U and Schultz H 1983 Radiat. Eff. 79 87
|
[30] |
Nikolaev A L and Kurennykh T E 2011 J. Nucl. Mater. 414 374
|
[31] |
Domain C and Becquart C S and Foct J 2004 Phys. Rev. B 69 144112
|
[32] |
Fu C L, Krcmar M, Painter G S and Chen X Q 2007 Phys. Rev. Lett. 99 225502
|
[33] |
Jiang Y, Smith J R and Odette G R 2009 Phys. Rev. B 79 064103
|
[34] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[35] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[36] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[37] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[38] |
Blochl P E 1994 Phys. Rev. B 50 17953
|
[39] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[40] |
Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
|
[41] |
Pozzo M and Alfe D 2009 Int. J. Hydrog. Energy 34 1922
|
[42] |
Kittel C 1996 Introduction to Solid State Physics (New York: Wiley) pp. 144-164
|
[43] |
Jahnatek M, Krajc M and Hafner J 2005 Phys. Rev. B 71 024101
|
[44] |
Verma A K and Modak P 2008 Europhys. Lett. 81 37003
|
[45] |
Jiang D E and Carter E A 2003 Phys. Rev. B 67 214103
|
[46] |
Barouh C, Schuler T, Fu C C and Nastar M 2014 Phys. Rev. B 90 054112
|
[47] |
Zhang P B, Zhao J J, Qin Y and Wen B 2011 J. Nucl. Mater. 413 90
|
[48] |
Zhang P B, Zhao J J, Qin Y and Wen B 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1735
|
[49] |
Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverria J, Cremades E, Barragan F and Alvarez S 2008 Dalton Trans. 28 32
|
[50] |
Hu Q M, Xu D S, Yang R, Li D and Wu W T 2003 Philosophical Magazine 83 217
|
[51] |
Hu Q M, Xu D S, Yang R, Li D and Wu W T 2002 Phys. Rev. B 66 064201
|
[52] |
Liu Y L, Zhou H B, Zhang Y, Lu G H and Luo G N 2011 Comp. Mater. Sci. 50 3213
|
[53] |
Liu Y L, Zhou H B, Zhang Y and Duan C 2012 Comp. Mater. Sci. 62 282
|
[54] |
Li X C, Shu X L, Liu Y N, Gao F and Lu G H 2011 J. Nucl. Mater. 408 12
|
[55] |
Zhou H B, Jin S, Zhang Y and Lu G H 2011 Progress in Natural Science: Materials International 21 240
|
[56] |
Zhou H B, Jin S, Zhang Y, Lu G H and Liu F 2012 Phys. Rev. Lett. 109 135502
|
[57] |
Zhang L, Zhang Y, Geng W T and Lu G H 2012 Europhys. Lett. 98 17001
|
[58] |
Li X C, Shu X L, Liu Y N, Yu Y, Gao F and Lu G H 2012 J. Nucl. Mater. 426 31
|
[59] |
Zhou H B, Jin S, Shu X L, Zhang Y, Lu G H and Liu F 2011 Europhys. Lett. 96 66001
|
[60] |
Lu G H, Wang Q and Liu F 2008 Appl. Phys. Lett. 92 211906
|
[61] |
Wei Y, Zhou H B, Zhang Y, Lu G H and Xu H B 2011 J. Phys.: Condens. Matter 23 225504
|
[62] |
Hu X L, Liu L H, Zhang Y, Lu G H and Wang T M 2011 J. Phys.: Condens. Matter 23 025501
|
[63] |
Zhou H B, Jin S, Zhang Y and Lu G H 2011 Science China Physics, Mechanics & Astronomy 54 2164
|
[64] |
Toth L E, Zbasnik J, Sato Y and Gardner W 1968 Anisotropy in Single-Crystal Refractory Compounds (New York: Plenum) pp. 249-266
|
[65] |
Lye R G 1967 Atomic and Electronic Structure of Metals (Ohio: American Society for Metals Metals) p. 99
|
[66] |
Toth L E 1971 Transition Metal Carbides and Nitrides (New York: Academic) pp. 12069-12073
|
[67] |
Storms E K 1967 The Refractory Carbides (New York: Academic) pp. 464-484
|
[68] |
Froidevaux D and Rossier D 1967 J. Phys. Chem. Solids 28 1197
|
[69] |
Fu C L, Krcmar Maja, Painter G S and Chen X Q 2007 Phys. Rev. Lett. 99 225502
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|