Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 034101    DOI: 10.1088/1674-1056/25/3/034101

Spoof surface plasmon-based bandpass filter with extremely wide upper stopband

Xiaoyong Liu(刘小勇)1,2, Lei Zhu(祝雷)2, Yijun Feng(冯一军)1
1. Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2. Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
Abstract  We investigate the guiding modes of spoof surface plasmon polaritons (SPPs) on a symmetric ultra-thin plasmonic structure. From the analysis, we deduce the operating frequency region of the single-mode propagation. Based on this property, a spoof SPPs lowpass filter is then constituted in the microwave frequency. By introducing a transmission zero at the lower frequency band using a pair of stepped-impedance stubs, a wide passband filter is further realized. The proposed filter is fed by a transducer composed of a microstrip line with a flaring ground. The simulated results show that the presented filter has an extremely wide upper stopband in addition to excellent passband filtering characteristics such as low loss, wide band, and high square ratio. A prototype passband filter is also fabricated to validate the predicted performances. The proposed spoof-SPPs filter is believed to be very promising for other surface waveguide components in microwave and terahertz bands.
Keywords:  spoof surface plasmon polaritons      bandpass filter      stop band      dispersion relation  
Received:  05 August 2015      Revised:  29 September 2015      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  84.40.Az (Waveguides, transmission lines, striplines)  
  84.40.Dc (Microwave circuits)  
Fund: Project supported by the Key Grant Project of Ministry of Education of China (Grant No. 313029), the FDCT Research Grant from Macao Science and Technology Development Fund, China (Grant No. 051/2014/A1), and the Multi-Year Research Grant from University of Macau, Macau SAR, China (Grant No. MYRG2014-00079-FST).
Corresponding Authors:  Lei Zhu, Yijun Feng     E-mail:;

Cite this article: 

Xiaoyong Liu(刘小勇), Lei Zhu(祝雷), Yijun Feng(冯一军) Spoof surface plasmon-based bandpass filter with extremely wide upper stopband 2016 Chin. Phys. B 25 034101

[1] Maier S A 2007 Plasmonics: Fundamentals and Applications (NewYork: Springer)
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Ozbay E 2006 Science 311 189
[4] Pendry J B, Martín-Moreno L and Garcia-Vidal F J 2004 Science 305 847
[5] Garcia-Vidal F J, Martin-Moreno L and Pendry J B 2005 J. Opt. A Pure Appl. Opt. 7 S97
[6] Hibbins A P, Evans B R and Sambles J R 2005 Science 308 670
[7] García de Abajo F J and Sáenz J 2005 Phys. Rev. Lett. 95 233901
[8] Fernández-Domínguez A, Moreno E, Martin-Moreno L and Garcia-Vidal J F 2009 Phys. Rev. B 79 233104
[9] Martin-Cano D, Nesterov M L, Fernandez-Dominguez A I, Garcia-Vidal F J, Martin-Moreno L and Moreno E 2010 Opt. Express 18 754
[10] Zhou Y J and Cui T J 2011 Appl. Phys. Lett. 99 101906
[11] Zhou Y J and Cui T J 2011 Appl. Phys. Lett. 98 221901
[12] Ding L, Liu J S, and Wang K J 2010 Chin. Phys. B 19 0127302
[13] Shen X, Cui T J, Martin-Cano D and Garcia-Vidal F J 2013 Proc. Natl. Acad. Sci. USA 110 40
[14] Gao X, Shi J H, Shen X P, Ma H F, Jiang W X, Li L M and Cui T J 2013 Appl. Phys. Lett. 102 151912
[15] Liu X Y, Feng Y J, Chen K, Zhu B, Zhao J M and Jiang T 2014 Opt. Express 22 20107
[16] Ma H F, Shen X P, Cheng Q, Jiang W X and Cui T J 2014 Laser Photon. Rev. 8 146
[17] Gao X, Zhou L, Liao Z, Ma H F and Cui T J 2014 Appl. Phys. Lett. 104 191603
[18] Yin J Y, Ren J, Zhang H C, Pan B C and Cui T J 2014 Scientific Reports 5 8165
[19] Liu X Y, Zhao J M, Jiang T and Feng Y J 2014 Proceeding of 2014 IEEE International Wireless Symposium (IWS), March 24-26, 2014 Xi'an, China, p. 231
[20] Zhu L, Sun S and Menzel W 2005 IEEE Microw. Wireless Compon. Lett. 15 796
[21] Liu X Y, Feng Y J, Zhu B, Zhao J M and Jiang T 2013 Opt. Exp. 21 31155
[22] Zhang S and Zhu L 2013 IEEE Trans. Microwave Theory Tech. 61 1812
[1] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[2] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[3] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[4] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[5] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[6] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[7] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[8] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[9] Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure
Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠). Chin. Phys. B, 2020, 29(6): 068502.
[10] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[11] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[12] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[13] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[14] Compact wide stopband superconducting bandpass filter using modified spiral resonators with interdigital structure
Di Wu(吴荻), Bin Wei(魏斌), Bo Li(李博), Xu-Bo Guo(郭旭波), Xin-Xiang Lu(卢新祥), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068502.
[15] Compact high-order quint-band superconducting band-pass filter
Di Wu(吴荻), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xin-Xiang Lu(卢新祥), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068503.
No Suggested Reading articles found!