Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 028702    DOI: 10.1088/1674-1056/ac29a9

Iterative filtered ghost imaging

Shao-Ying Meng(孟少英)1, Mei-Yi Chen(陈美伊)1, Jie Ji(季杰)1, Wei-Wei Shi(史伟伟)1, Qiang Fu(付强)1, Qian-Qian Bao(鲍倩倩)1, Xi-Hao Chen(陈希浩)1,†, and Ling-An Wu(吴令安)2
1 Key Laboratory of Optoelectronic Devices and Detection Technology, School of Physics, Liaoning University, Shenyang 110036, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  It is generally believed that, in ghost imaging, there has to be a compromise between resolution and visibility. Here we propose and demonstrate an iterative filtered ghost imaging scheme whereby a super-resolution image of a grayscale object is achieved, while at the same time the signal-to-noise ratio (SNR) and visibility are greatly improved, without adding complexity. The dependence of the SNR, visibility, and resolution on the number of iterations is also investigated and discussed. Moreover, with the use of compressed sensing the sampling number can be reduced to less than 1% of the Nyquist limit, while maintaining image quality with a resolution that can exceed the Rayleigh diffraction bound by more than a factor of 10.
Keywords:  ghost imaging      bandpass filtering      compressed sensing      iteration  
Received:  17 July 2021      Revised:  22 September 2021      Accepted manuscript online:  24 September 2021
PACS: (Spatial resolution)  
  87.63.lm (Image enhancement)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504302), the National Natural Science Foundation of China (Grant No. 61975229), and Civil Space Project (Grant No. D040301).
Corresponding Authors:  Xi-Hao Chen     E-mail:

Cite this article: 

Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安) Iterative filtered ghost imaging 2022 Chin. Phys. B 31 028702

[1] Pittman T, Shih Y H, Strekalov D and Sergienko A 1995 Phys. Rev. A 52 R3429
[2] Cheng J and Han S 2004 Phys. Rev. Lett. 92 093903
[3] Brambilla A E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[4] Cai Y J and Zhu S Y 2005 Phys. Rev. E 71 056607
[5] Cao D Z, Xiong J and Wang K G 2005 Phys. Rev. A 71 013801
[6] Valencia A, Scarcelli G, D'Angelo M and Shih Y 2005 Phys. Rev. Lett. 94 063601
[7] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[8] Chen X H, Liu Q, Luo K H and Wu L A 2009 Opt. Lett. 34 695
[9] Gong W L and Han S S 2011 Opt. Lett. 36 394
[10] Cheng J 2009 Opt. Express 17 7916
[11] Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R and Padgett M J 2014 Optica 1 285
[12] Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D and Han S S 2012 Appl. Phys. Lett. 101 141123
[13] Clemente P, Durn V, Torres-Company V, Tajahuerce E and Lancis J 2010 Opt. Lett. 35 2391
[14] Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V and Wu L A 2010 Opt. Lett. 35 1166
[15] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603
[16] Shapiro J H 2008 Phys. Rev. A 78 061802
[17] Sun M J, Edgar M P, Phillips D B, Gibson G M and Padgett M J 2016 Opt. Express 24 010476
[18] Luo K H, Huang B Q, Zheng W M and Wu L A 2012 Chin. Phys. Lett. 29 074216
[19] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[20] Shechtman Y, Gazit S, Szameit A, Eldar Y C and Segev M 2010 Opt. Lett. 35 1148
[21] Zhang P L, Gong W L, Shen X, Huang D J and Han S S 2009 Opt. Lett. 34 1222
[22] Sprigg J, Peng T and Shih Y H 2016 Sci. Rep. 6 38077
[23] Gong W L and Han S S 2012 Phys. Lett. A 376 1519
[24] Oh J E, Cho Y W, Scarcelli G and Kim Y H 2013 Opt. Lett. 38 682
[25] Yao X R, Li L Z, Liu X F, Yu W K and Zhai G J 2013 Chin. Phys. B 24 044203
[26] Chen X H, Kong F H, Fu Q, Meng S Y and Wu L A 2017 Opt. Lett. 42 5290
[27] Meng S Y, Sha Y H, Fu Q, Bao Q Q, Shi W W, Li G D, Chen X H and Wu L A 2018 Opt. Lett. 43 4759
[28] Wang W, Wang Y P, Li J H, Yang X X and Wu Y 2014 Opt. Lett. 39 5150
[29] Yao X R, Yu W K, Liu X F, Li L Z, Li M F, Wu L A and Zhai G J 2014 Opt. Express 22 24268
[30] Horisaki R, Takagi R and Tanida J 2016 Opt. Express 24 13738
[31] Yu M L, Wang W, Wang H O, Wang H C, Li G W, Chen N and Situ G H 2017 Sci. Rep. 7 17865
[32] He Y C, Wang G, Dong G X, Zhu S T, Chen H, Zhang A X and Xu Z 2018 Sci. Rep. 8 6469
[33] Meng S Y, Shi W W, Ji J, Tao J J, Fu Q, Chen X H and Wu L A 2020 Chin. Phys. B 29 128704
[34] Wang K G and Cao D Z 2004 Phys. Rev. A 70 041801
[35] Li M F, Zhang Y R, Luo K H, Wu L A and Fan H 2013 Phys. Rev. A 87 033813
[36] Basano L and Ottonello P 2016 Opt. Express 15 12386
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[4] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[5] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[6] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[7] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[8] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[9] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[10] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[11] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[12] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[13] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[14] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[15] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
No Suggested Reading articles found!