Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034102    DOI: 10.1088/1674-1056/abca23
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design and verification of a broadband highly-efficient plasmonic circulator

Jianfei Han(韩建飞)1, Shu Zhen(甄姝)1, Weihua Wang(王伟华)1, Kui Han(韩奎)1, Haipeng Li(李海鹏)1, Lei Zhao(赵雷)2, and Xiaopeng Shen(沈晓鹏)1,
1 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; 2 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract  Circulators play a significant role in radar and microwave communication systems. This paper proposes a broadband and highly efficient plasmonic circulator, which consists of spoof surface plasmon polaritons (SSPPs) waveguides and ferrite disks to support non-reciprocal mode coupling. The simulated performance of symmetrically designed circulator shows that it has an insertion loss of roughly 0.5 dB while the isolation and return loss is more than 12 dB in the frequency range of 6.0 GHz-10.0 GHz (relative bandwidth of 50%). Equivalent circuit model has been proposed to explain the operating mechanism of the plasmonic circulator. The equivalent circuit model, numerical simulations, and experimental results are consistent with each other, which demonstrates the good performance of the proposed plasmonic circulator.
Keywords:  plasmonic      circulator      spoof surface plasmon polaritons      ferrite  
Received:  18 September 2020      Revised:  19 October 2020      Accepted manuscript online:  13 November 2020
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  84.40.Az (Waveguides, transmission lines, striplines)  
  85.70.Ge (Ferrite and garnet devices)  
Fund: Project supported by the Six-Talent-Peaks Project in Jiangsu Province of China (Grant No. XYDXX-072) and the National Natural Science Foundation of China (Grant No. 61372048).
Corresponding Authors:  Corresponding author. E-mail: xpshen@cumt.edu.cn   

Cite this article: 

Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏) Design and verification of a broadband highly-efficient plasmonic circulator 2021 Chin. Phys. B 30 034102

1 Hines M E 1971 IEEE Trans. Micro. Theory Tech. 19 442
2 Qiu W, Wang Z and Marin S 2011 Opt. Express 19 22248
3 Dmitriev V, Kawakatsu M N and De Souza F J M 2012 Opt. Lett. 37 3192
4 Liu A Q, Khoo E H, Cheng T H, Li E P and Li J 2008 Appl. Phys. Lett. 92 021119
5 Shams S I, Elsaadany M and Kishk A A 2019 IEEE Trans. Micro. Theory Tech. 67 94
6 Bosma H 1964 IEEE Trans. Microwave Theory Tech. 12 61
7 Fay C E and Comstock R L1965 IEEE Trans. Microw. Theory Tech. MTT-13 15
8 Button K and Lax B1956 IEEE Trans. Anten. Propag. 4 531
9 Afshani A and Wu K 2019 IEEE Trans. Microw. Theory Tech. 67 3350
10 Helszajn J1984 IEEE Trans. Microw. Theory Tech. MTT-32 908
11 Turki H, Huitema L, Monediere T, Lenoir B and Breuil C 2019 IEEE Trans. Microw. Theory Tech. 67 845
12 Liu K, Torki A and He S 2016 Opt. Lett. 41 800
13 Dmitriev V, Silva S and Castro W 2019 Opt. Express 27 15982
14 Yu Z, Veronis G, Wang Z and Fan S 2008 Phys. Rev. Lett. 100 023902
15 Jiang M, Zhu L and Zhu Q 2019 Appl. Phys. Lett. 114 012408
16 Hu B, Wang Q J and Zhang Y 2012 Opt. Lett. 37 1895
17 Li H P, Xia H D, Wang Z G, Zhang X X, Chen Y F, Zhang S J, Tang X G and Liu Y 2014 Chin. Phys. B 23 024209
18 Abdo B, Bronn N T, Jinka O, Olivadese S, Corcoles A D, Adiga V P, Brink M, Lake R E, Wu X, Pappas D P and Chow J M 2019 Nat. Commun. 10 3154
19 Shalaby M, Peccianti M, Ozturk Y and Morandotti R 2013 Nat. Commun. 4 1558
20 Shen Z, Zhang Y L, Chen Y, Sun F W, Zou X B, Guo G C, Zou C L and Dong C H2018 Nat. Comun. 9 1797
21 Estep N A, Sounas D L, Soric J and Al\`u A 2014 Nat. Phys. 10 923
22 Pendry J B, Mart\'ín-Moreno L and Garcia-Vidal F J 2004 Science 305 847
23 Fang Y R and Sun M T2015 Light Sci. Appl. 4 e294
24 Chen L Y, Zong Z X, Gao J L, Tang S L and Du Y W 2019 Chin. Phys. B 28 083302
25 Shen X P, Cui T J, Martin-Cano D and Garcia-Vidal F J 2013 Proc. Natl. Acad. Sci. USA 110 40
26 Ma H F, Shen X P, Cheng Q, Jiang W X and Cui T J 2014 Laser Photonics. Rev. 8 146
27 Wang J.F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y and Li Y F 2012 Appl. Phys. Lett. 101 201104
28 Shen X P and Cui T J2013 Appl. Phys. Lett. 102 211909
29 Liu X, Feng Y, Chen K, Zhu B and Jiang T2014 Opt. Express 22 20107
30 Gao X, Zhou L, Yu X Y, Cao W P, Li H O, Ma H F and Cui T J 2015 Opt. Express 23 23270
31 Liu X Y, Zhu L and Feng Y J 2016 Chin. Phys. B 25 034101
32 Wang J, Zhao L, Hao Z C and Cui T J 2018 Appl. Phys. Lett. 113 071101
33 Zhang H C, Zhang L P, He P H, Xu J and Cui T J 2020 Light Sci. Appl. 9 113
34 Pan J W, Wang J F, Qiu T S, Pang Y Q, Li Y F, Zhang J Q and Qu S B 2018 AIP Adv. 8 055002
35 Davies J B and Cohen P 1963 IEEE Trans. Micro. Theory Tech. 11 506
36 Konishi Y 1965 IEEE Trans. Micro. Theory Tech. 13 852
37 Zhao L, Zhang X, Wang J, Yu W, Li J, Su H and Shen X P 2016 Sci. Rep. 6 36069
38 Kianinejad A, Chen Z N and Qiu C W 2015 IEEE Trans. Micro. Theory Tech. 63 1817
39 Yu W, Luo G Q, Yu Y, Pan Y, Cao W, Pan Y and Shen Z 2019 IEEE Trans. Anten. Propag. 67 1318
40 Knerr R H, Barnes C E and Bosch A F 1971 IEEE Trans. Micro. Theory Tech. 18 1100
41 Konishi Y 1975 IEEE Trans. Magn. 11 1262
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[3] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[4] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[5] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[6] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[7] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[8] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[9] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[10] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[11] Quality factor enhancement of plasmonic surface lattice resonance by using asymmetric periods
Yunjie Shi(石云杰), Lei Xiong(熊磊), Yuming Dong(董玉明), Degui Sun(孙德贵), and Guangyuan Li(李光元). Chin. Phys. B, 2022, 31(1): 014217.
[12] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[13] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[14] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[15] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
No Suggested Reading articles found!