Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 068503    DOI: 10.1088/1674-1056/27/6/068503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Compact high-order quint-band superconducting band-pass filter

Di Wu(吴荻)1, Bin Wei(魏斌)1, Xi-Long Lu(陆喜龙)2, Xin-Xiang Lu(卢新祥)3, Xu-Bo Guo(郭旭波)1, Bi-Song Cao(曹必松)1
1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 The No. 14 Research Institute, China Electronic Technology Corporation(CETC), Nanjing 210013, China;
3 Department of Physics and Electronic Engineering, Shaoxing University, Shaoxing 312000, China
Abstract  In this paper, we present a compact quint-band superconducting filter operating at 2.4, 3.5, 4.7, 5.3, and 5.9 GHz. Matching junctions with different impedance branch lines are used to connect a dual-band sub-filter with a tri-band sub-filter and to reduce the channel interactions. The quint-band filter design is divided into two sections to determine the controllable frequencies and bandwidths, while ensuring compact size and reducing design complexity. The filter is fabricated on double-sided YBCO film deposited on an MgO substrate with a size of 26 mm×19 mm. The measured results match well with the simulations.
Keywords:  high-temperature superconducting      bandpass filter      multi-band      quint-band filter  
Received:  02 November 2017      Revised:  03 March 2018      Accepted manuscript online: 
PACS:  85.25.-j (Superconducting devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61371009 and 61401282) and the National Key Scientific Instrument and Equipment Development Project of China (Grant No.2014YQ030975).
Corresponding Authors:  Bin Wei     E-mail:  weibin@mail.tsinghua.edu.cn

Cite this article: 

Di Wu(吴荻), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xin-Xiang Lu(卢新祥), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松) Compact high-order quint-band superconducting band-pass filter 2018 Chin. Phys. B 27 068503

[1] Zuo T, Zhao X J, Wang X K, Yue H W, Fang L and Yan S L 2009 Acta Phys. Sin. 58 4194 (in Chinese)
[2] Zhang Q S, Zhu F J and and Zhou H S 2015 Chin. Phys. B 24 107506
[3] Liu X Y, Zhu L and Feng Y J 2016 Chin. Phys. B 25 034101
[4] Me C M, Xu J, Kang W and Wu W 2016 Electron. Lett. 52 1463
[5] Ai J, Zhang Y H, Xu K D, Li D T and Fan Y 2016 IEEE Microw. Wireless Compon. Lett. 26 343
[6] Hsu K W, Lin J H and Tu W H 2014 IEEE Microw. Wireless Compon. Lett. 24 593
[7] Chen S F 2012 IEEE Microw. Wireless Compon. Lett. 22 357
[8] Heng Y, Guo X B, Cao B S, Wei B, Zhang X P, Chen W, Ying Z J and Song X K 2013 Electron. Lett. 49 658
[9] Wu H W and Yang R Y 2011 IEEE Microw. Wireless Compon. Lett. 21 203
[10] Cui C W and Liu Y 2014 Electron. Lett. 50 1719
[11] Ren L Y 2010 IEEE Microw. Wireless Compon. Lett. 20 429
[12] Bukuru D, Song K J, Zhang F, Zhu Y and Fan M Y 2017 IEEE Trans. Microw. Theory Tech. 65 783
[13] Wei F, Qin P Y, Guo Y J and Shi X W 2016 IET Microw. Anten. Propag. 10 230
[14] Xu J, Wu W and Miao C 2013 IEEE Trans. Microw. Theory Tech. 61 3187
[15] Gao L, Zhang X Y, Zhao X L, Zhang Y and Xu J X 2016 IEEE Microw. Wireless Compon. Lett. 26 395
[16] Zhang Y, Gao L and Zhang X Y 2015 IEEE Microw. Wireless Compon. Lett. 25 645
[17] Xu J 2015 Microw. Opt. Technol. Lett. 57 997
[18] Xiao M, Li X Z and Sun G L 2016 Electron. Lett. 52 848
[19] Wei F and Shi X W 2014 Microw. Opt. Technol. Lett. 56 1633
[20] Liu J C, Wang J W, Zeng B H and Chang D C 2010 IEEE Microw. Wireless Compon. Lett. 20 142
[21] Song F, Zhu L, Wei B, Cao B S, Jiang L N and Li B 2016 IEEE Trans. Appl. Supercond. 26 1501610
[22] Liu H W, Ren B P, Guan X H, Wen P and Wang Y 2014 IEEE Trans. Microw. Theory Tech. 62 2931
[23] Heng Y, Guo X B, Cao B S, Wei B, Zhang X P, Zhang G Y and Song X K 2013 IEEE Microw. Wireless Compon. Lett. 23 400
[24] Lu X L, Wei B, Cao B S, Guo X B, Zhang X P, Song X K, Heng Y and Xu Z 2014 IEEE Trans. Appl. Supercond. 24 1500205
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[3] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[4] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[5] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[6] Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface
Lan-Lan Zhang(张兰兰), Ping Li(李萍), and Xiao-Wei Song(宋霄薇). Chin. Phys. B, 2021, 30(12): 127803.
[7] Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial
Ying-Hua Wang(王英华), Jie Li(李杰), Zheng-Gao Dong(董正高), Yan Li(李妍), and Xu Zhang(张旭). Chin. Phys. B, 2021, 30(11): 114216.
[8] Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure
Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠). Chin. Phys. B, 2020, 29(6): 068502.
[9] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[10] Compact wide stopband superconducting bandpass filter using modified spiral resonators with interdigital structure
Di Wu(吴荻), Bin Wei(魏斌), Bo Li(李博), Xu-Bo Guo(郭旭波), Xin-Xiang Lu(卢新祥), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068502.
[11] Design of multi-band metasurface antenna array with low RCS performance
Si-Ming Wang(王思铭), Jun Gao(高军), Xiang-Yu Cao(曹祥玉), Yue-Jun Zheng(郑月军), Tong Li(李桐), Jun-Xiang Lan(兰俊祥), Liao-Ri Ji-Di(吉地辽日). Chin. Phys. B, 2018, 27(10): 104102.
[12] Compact superconducting single-and dual-band filter design using multimode stepped-impedance resonator
Xiang Wang(王翔), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(12): 128501.
[13] Design and theoretical study of a polarization-insensitive multiband terahertz metamaterial bandpass filter
Hai-Peng Li(李海鹏), Wen-Yue Fu(付文悦), Xiao-Peng Shen(沈晓鹏), Kui Han(韩奎), Wei-Hua Wang(王伟华). Chin. Phys. B, 2017, 26(12): 127801.
[14] High-temperature superconducting filter using self-embedding asymmetric stepped impedance resonator with wide stopband performance and miniaturized size
Dan Wang(王丹), Bin Wei(魏斌), Yong Heng(衡勇), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(10): 108502.
[15] Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting
Yilin Wang(王义林), Li Huang(黄理), Liang Du(杜亮), Xi Dai(戴希). Chin. Phys. B, 2016, 25(3): 037103.
No Suggested Reading articles found!