Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128704    DOI: 10.1088/1674-1056/abc15f
RAPID COMMUNICATION Prev   Next  

Super-resolution filtered ghost imaging with compressed sensing

Shao-Ying Meng(孟少英)1, Wei-Wei Shi(史伟伟)1, Jie Ji(季杰)1, Jun-Jie Tao(陶俊杰)1, Qian Fu(付强)1, Xi-Hao Chen(陈希浩)1,†, and Ling-An Wu(吴令安)2
1 Key Laboratory of Optoelectronic Devices and Detection Technology, School of Physics, Liaoning University, Shenyang 110036, China; 2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  A filtered ghost imaging (GI) protocol is proposed that enables the Rayleigh diffraction limit to be exceeded in an intensity correlation system; a super-resolution reconstructed image is achieved by low-pass filtering of the measured intensities. In a lensless GI experiment performed with spatial bandpass filtering, the spatial resolution can exceed the Rayleigh diffraction bound by more than a factor of 10. The resolution depends on the bandwidth of the filter, and the relationship between the two is investigated and discussed. In combination with compressed sensing programming, not only high resolution can be maintained but also image quality can be improved, while a much lower sampling number is sufficient.
Keywords:  ghost imaging      bandpass filtering      compressed sensing      super resolution  
Received:  17 August 2020      Revised:  22 September 2020      Accepted manuscript online:  15 October 2020
PACS:  87.57.cf (Spatial resolution)  
  87.63.lm (Image enhancement)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0504302 and 2017YFB0503301) and Defense Industrial Technology Development Program (Grant No. D040301-1).
Corresponding Authors:  Corresponding author. E-mail: xi-haochen@163.com   

Cite this article: 

Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安) Super-resolution filtered ghost imaging with compressed sensing 2020 Chin. Phys. B 29 128704

[1] Born M and Wolf E1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (New York: Cambridge University Press)
[2] Hell S W Science 316 1153 DOI: 10.1126/science.11373952007
[3] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J and Hess H F Science 313 1642 DOI: 10.1126/science.11273442006
[4] Moerner W E Proc. Natl. Acad. Sci. USA 104 12596 DOI: 10.1073/pnas.06100811042007
[5] Pittman T, Shih Y H, Strekalov D and Sergienko A Phys. Rev. A 52 R3429 DOI: 10.1103/PhysRevA.52.R34291995
[6] Cheng J and Han S S Phys. Rev. Lett. 92 093903 DOI: 10.1103/PhysRevLett.92.0939032004
[7] Gatti A, Brambilla E, Bache M and Lugiato L A Phys. Rev. Lett. 93 093602 DOI: 10.1103/PhysRevLett.93.0936022004
[8] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A Phys. Rev. Lett. 94 183602 DOI: 10.1103/PhysRevLett.94.1836022005
[9] Cai Y J and Zhu S Y Phys. Rev. E 71 056607 DOI: 10.1103/PhysRevE.71.0566072005
[10] Cao D Z, Xiong J and Wang K G Phys. Rev. A 71 013801 DOI: 10.1103/PhysRevA.71.0138012005
[11] Valencia A, Scarcelli G, D'Angelo M and Shih Y Phys. Rev. Lett. 94 063601 DOI: 10.1103/PhysRevLett.94.0636012005
[12] Zhang D, Zhai Y H, Wu L A and Chen X H Opt. Lett. 30 2354 DOI: 10.1364/OL.30.0023542005
[13] Chen X H, Liu Q, Luo K H and Wu L A Opt. Lett. 34 695 DOI: 10.1364/OL.34.0006952009
[14] Zhang P L, Gong W L, Shen X, Huang D J and Han S S Opt. Lett. 34 1222 DOI: 10.1364/OL.34.0012222009
[15] Sprigg J, Peng T and Shih Y H Sci. Rep. 6 38077 DOI: 10.1038/srep380772016
[16] Gong W L and Han S S Phys. Lett. A 376 1519 DOI: 10.1016/j.physleta.2012.03.0272012
[17] Oh J E, Cho Y W, Scarcelli G and Kim Y H Opt. Lett. 38 682 DOI: 10.1364/OL.38.0006822013
[18] Yao X R, Li L Z, Liu X F, Yu W K and Zhai G J Chin. Phys. B 24 044203 DOI: 10.1088/1674-1056/24/4/0442032015
[19] Chen X H, Kong F H, Fu Q, Meng S Y and Wu L A Opt. Lett. 42 5290 DOI: 10.1364/OL.42.0052902017
[20] Meng S Y, Sha Y H, Fu Q, Bao Q Q, Shi W W, Li G D, Chen X H and Wu L A Opt. Lett. 43 4759 DOI: 10.1364/OL.43.0047592018
[21] Cao D Z, Xiong J, Zhang S H, Lin L F, Gao L and Wang K G Appl. Phys. Lett. 92 201102 DOI: 10.1063/1.29197192008
[22] Chan K W C, O'Sullivan M N and Boyd R W Opt. Lett. 34 3343 DOI: 10.1364/OL.34.0033432009
[23] Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V and Wu L A Opt. Lett. 35 1166 DOI: 10.1364/OL.35.0011662010
[24] Ferri F, Magatti D, Lugiato L A and Gatti A Phys. Rev. Lett. 104 253603 DOI: 10.1103/PhysRevLett.104.2536032010
[25] Shapiro J H Phys. Rev. A 78 061802(R) DOI: 10.1103/PhysRevA.78.0618022008
[26] Luo K H, Huang B Q, Zheng W M and Wu L A Chin. Phys. Lett. 29 074216 DOI: 10.1088/0256-307X/29/7/0742162012
[27] Katz O, Bromberg Y and Silberberg Y Appl. Phys. Lett. 95 131110 DOI: 10.1063/1.32382962009
[28] Shechtman Y, Gazit S, Szameit A, Eldar Y C and Segev M Opt. Lett. 35 1148 DOI: 10.1364/OL.35.0011482010
[29] McKechnie T S Opt. Acta 19 729 DOI: 10.1080/7138186471972
[30] Chmyrow A, Keller J, Grotjohann T, Ratz M, d'Este E, Jakobs S, Eggeling C and Hell S W Nat. Methods 10 737 DOI: 10.1038/nmeth.25562013
[31] Yu W T, Ji Z H, Dong D S, Yang X S, Xiao Y F, Gong Q H, Xi P and Shi K B Laser Photon. Rev. 10 147 DOI: 10.1002/lpor.2015001512016
[32] Chen Z P, Shi J H and Zeng G H Appl. Opt. 55 8644 DOI: 10.1364/AO.55.0086442016
[33] Wright S J, Nowak R D and Figueiredo M A T IEEE Trans. Signal Process 57 2479 DOI: 10.1109/TSP.2009.20168922009
[34] Zhao C Q, Cong W L, Chen M L, Li E R, Wang H, Xu W D and Han S S Appl. Phys. Lett. 101 141123 DOI: 10.1063/1.47578742012
[35] Basano L and Ottonello P Opt. Express 15 12386 DOI: 10.1364/OE.15.0123862007
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[4] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[5] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[6] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[7] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[8] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[9] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[10] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[11] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[12] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[13] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[14] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[15] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
No Suggested Reading articles found!