Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 030303    DOI: 10.1088/1674-1056/25/3/030303
GENERAL Prev   Next  

Entanglement detection in the mixed-spin Ising-XY model

Hamid Arian Zad
Department of Physics, Shahrood University of Technology, Shahrood 36155-316, Iran
Abstract  

In the present work, we initially verify anisotropy effect on the heat capacity of a mixed-three-spin (1/2,1,1/2) system (where spins (1/2,1/2) have XY interaction and spins (1,1/2) have Ising interaction together) at finite temperatures, then, the pairwise entanglement for spins (1/2,1/2), by means of negativity (as a measure of entanglement) as a function of the temperature T, homogeneous magnetic field B, and anisotropy parameter γ is investigated. In addition, we show that one can find magnetic phase transition points for the spins (1/2,1/2) at finite temperatures and understand properly their behavior with respect to the magnetic field and the anisotropy parameter, via the negativity function. An interval of the magnetic field from the negativity diagram of the spins (1/2,1/2) is presented in which quantum phase transition occurs for the tripartite mixed-three-spin system. Finally, some new interesting entanglement witnesses are introduced by using non-degenerate perturbation theory for the mixed-three-spin system.

Keywords:  anisotropy      negativity      heat capacity      witness  
Received:  29 October 2015      Revised:  02 December 2015      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  05.30.Rt (Quantum phase transitions)  
Corresponding Authors:  Hamid Arian Zad     E-mail:  arianzad.hamid@yahoo.com

Cite this article: 

Hamid Arian Zad Entanglement detection in the mixed-spin Ising-XY model 2016 Chin. Phys. B 25 030303

[1] Cerf N J and Adami C 1997 Fund. Theor. Phys. 81 77
[2] Connor K M O and Wootters W K 2001 Phys. Rev. A 63 052302
[3] Cerf N J and Adami C 1997 Phys. Rev. Lett. 79 5194
[4] Horodecki M, Oppenheim J and Winter A 2007 Commun. Math. Phys. 269 107
[5] Horodecki M, Oppenheim J and Winter A 2005 Nature 436 673
[6] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[7] Barnett S M 2009 Quantum Information (Oxford University Press) p. 313
[8] Wilde M M 2012 From Classical to Quantum Shannon Theory (arXiv:quant-ph/110601445v4) p. 670
[9] McMahon D 2008 Quantum Computing Explained (Wiley-Interscience) p. 351
[10] Rong C R, Jie X Y and Xiao M Z 2010 Chin. Phys. B 19 050304
[11] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[12] Huang Y 2014 Phys. Rev. B 89 054410
[13] Sun Z, Lu X M, Xiong H N and Ma J 2009 New J. Phys. 11 113005
[14] Rigolin G 2004 Int. J. Quantum Inf. 2 393
[15] Qiong W, Qiao L J and Sheng Z H 2010 Chin. Phys. B 19 100311
[16] Cui J, Gu M, Kwek L C, Frana S M, Fan H and Vedral V 2012 Nat. Commun. 3 812
[17] Jie R, Zhong W Y and Qun Z S 2012 Chin. Phys. Lett. 29 060305
[18] Popkov V, Karevski D and Schutz G M 2013 Phys. Rev. E 88 062118
[19] Li D C and Cao Z L 2009 Opt. Commun. 282 1226
[20] Mamtimin T Abliz A v R Ablimit A and Qiao P P 2013 Chin. Phys. Lett. 30 030303
[21] Zidan N 2014 J. Quantum Inf. Science 4 104
[22] Fisher M E 1964 Am. J. Phys. 32 343
[23] Jie Q and Bin Z 2015 Chin. Phys. B 24 110306
[24] Qing G Y, Yao D, Pei P, Min T D, Fu W D and Dong M 2015 Chin. Phys. Lett. 32 060303
[25] Liu W M, Fan W B, Zheng W M, Liang J Q and Chui S T 2002 Phys. Rev. Lett. 88 170408
[26] Abliz A, Gao H J, Xie X C, Wu Y S and Liu W M 2006 Phys. Rev. A 74 052105
[27] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[28] Ning W Q, Gu S J, Chen Y G, Wu C Q and Lin H Q 2008 J. Phys.: Condens. Matter 20 235236
[29] Xi Z, Lu X M, Wang X and Li Y 2011 J. Phys. A: Math. Theor. 44 375301
[30] Fan C H, Xiong H N, Huang Y and Sun Z 2013 Quantum Inf. Comput. 13 452
[31] Plenio M and Virmani B S 2007 Quantum Inf. Comput. 7 001
[32] Cerf N J and Adami C 1998 Physica D 120 62
[33] Wang X and Gu S J 2007 J. Phys. A: Math. Theor. 40 10759
[34] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[35] Singh H, Chakraborty T, Das D, Jeevan H S, Tokiwa Y, Gegenwart P and Mitra C 2013 New J. Phys. 15 113001
[36] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[37] Li S B, Xu Z X, Dai J H and Xu J B 2006 Phys. Rev. B 73 184411
[38] Saadatmand S N, Powell B J and McCulloch I P 2015 Phys. Rev. B 91 245119
[39] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517-576
[40] Tth G 2005 Phys. Rev. A 71 010301
[41] Laskowski W, Markiewicz M, Paterek T and Weinar R 2013 Phys. Rev. A 88 022304
[42] Dowling M R, Doherty A C and Bartlett S D 2004 Phys. Rev. A 70 062113
[43] Fan H, Korepin V and Roychowdhury V 2004 Phys. Rev. Lett. 93 227203
[44] Zad H A 2015 Acta Phys. Pol. B 46 1911
[45] Gu S J, Li H, Li Y Q and Lin H Q 2004 Phys. Rev. A 70 052302
[46] Kwek L C, Takahashi Y and Choo K W 2009 J. Phys.: Conf. Ser. 143 012014
[47] Ivanov N, Richter B J and Schulenburg J 2009 Phys. Rev. B 79 104412
[48] Han S D, Tufekci T, Spiller T P and Aydiner E 2011 arXiv:quant-ph/1111.2694
[49] Han S D and Aydiner E 2014 Chin. Phys. B 23 050305
[50] Rojas O, Souza S M D, Ohanyan V and Khurshudyan M 2011 Phys. Rev. B 83 094430
[51] Rojas O, Rojas M, Ananikian N S and Souza S M D 2012 Phys. Rev. A 86 042330
[52] Ananikian N S, Ananikyan L N, Chakhmakhchyan L A and Rojas O 2012 J. Phys.: Condens. Matter 24 256001
[53] Furman G B, Meerovich V M and Sokolovsky V L 2012 Quantum. Inf. Process 11 1603
[54] Dalgarno A and Lewis J T 1956 Proc. R. Soc. A 233 70
[55] Balantekin A B and Malkus A 2010 arXiv:math-ph/1012.4783
[56] Schwart C 1959 Ann. Phys. 2 159
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[6] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[7] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[12] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[13] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[14] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[15] Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice
Liangwei Wang(王良伟), Kai Wen(文凯), Fangde Liu(刘方德), Yunda Li(李云达), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), Liangchao Chen(陈良超), Wei Han(韩伟), Zengming Meng(孟增明), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(10): 103401.
No Suggested Reading articles found!