|
|
Entanglement detection in the mixed-spin Ising-XY model |
Hamid Arian Zad |
Department of Physics, Shahrood University of Technology, Shahrood 36155-316, Iran |
|
|
Abstract In the present work, we initially verify anisotropy effect on the heat capacity of a mixed-three-spin (1/2,1,1/2) system (where spins (1/2,1/2) have XY interaction and spins (1,1/2) have Ising interaction together) at finite temperatures, then, the pairwise entanglement for spins (1/2,1/2), by means of negativity (as a measure of entanglement) as a function of the temperature T, homogeneous magnetic field B, and anisotropy parameter γ is investigated. In addition, we show that one can find magnetic phase transition points for the spins (1/2,1/2) at finite temperatures and understand properly their behavior with respect to the magnetic field and the anisotropy parameter, via the negativity function. An interval of the magnetic field from the negativity diagram of the spins (1/2,1/2) is presented in which quantum phase transition occurs for the tripartite mixed-three-spin system. Finally, some new interesting entanglement witnesses are introduced by using non-degenerate perturbation theory for the mixed-three-spin system.
|
Received: 29 October 2015
Revised: 02 December 2015
Accepted manuscript online:
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
64.60.De
|
(Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
Corresponding Authors:
Hamid Arian Zad
E-mail: arianzad.hamid@yahoo.com
|
Cite this article:
Hamid Arian Zad Entanglement detection in the mixed-spin Ising-XY model 2016 Chin. Phys. B 25 030303
|
[1] |
Cerf N J and Adami C 1997 Fund. Theor. Phys. 81 77
|
[2] |
Connor K M O and Wootters W K 2001 Phys. Rev. A 63 052302
|
[3] |
Cerf N J and Adami C 1997 Phys. Rev. Lett. 79 5194
|
[4] |
Horodecki M, Oppenheim J and Winter A 2007 Commun. Math. Phys. 269 107
|
[5] |
Horodecki M, Oppenheim J and Winter A 2005 Nature 436 673
|
[6] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[7] |
Barnett S M 2009 Quantum Information (Oxford University Press) p. 313
|
[8] |
Wilde M M 2012 From Classical to Quantum Shannon Theory (arXiv:quant-ph/110601445v4) p. 670
|
[9] |
McMahon D 2008 Quantum Computing Explained (Wiley-Interscience) p. 351
|
[10] |
Rong C R, Jie X Y and Xiao M Z 2010 Chin. Phys. B 19 050304
|
[11] |
Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
|
[12] |
Huang Y 2014 Phys. Rev. B 89 054410
|
[13] |
Sun Z, Lu X M, Xiong H N and Ma J 2009 New J. Phys. 11 113005
|
[14] |
Rigolin G 2004 Int. J. Quantum Inf. 2 393
|
[15] |
Qiong W, Qiao L J and Sheng Z H 2010 Chin. Phys. B 19 100311
|
[16] |
Cui J, Gu M, Kwek L C, Frana S M, Fan H and Vedral V 2012 Nat. Commun. 3 812
|
[17] |
Jie R, Zhong W Y and Qun Z S 2012 Chin. Phys. Lett. 29 060305
|
[18] |
Popkov V, Karevski D and Schutz G M 2013 Phys. Rev. E 88 062118
|
[19] |
Li D C and Cao Z L 2009 Opt. Commun. 282 1226
|
[20] |
Mamtimin T Abliz A v R Ablimit A and Qiao P P 2013 Chin. Phys. Lett. 30 030303
|
[21] |
Zidan N 2014 J. Quantum Inf. Science 4 104
|
[22] |
Fisher M E 1964 Am. J. Phys. 32 343
|
[23] |
Jie Q and Bin Z 2015 Chin. Phys. B 24 110306
|
[24] |
Qing G Y, Yao D, Pei P, Min T D, Fu W D and Dong M 2015 Chin. Phys. Lett. 32 060303
|
[25] |
Liu W M, Fan W B, Zheng W M, Liang J Q and Chui S T 2002 Phys. Rev. Lett. 88 170408
|
[26] |
Abliz A, Gao H J, Xie X C, Wu Y S and Liu W M 2006 Phys. Rev. A 74 052105
|
[27] |
Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
|
[28] |
Ning W Q, Gu S J, Chen Y G, Wu C Q and Lin H Q 2008 J. Phys.: Condens. Matter 20 235236
|
[29] |
Xi Z, Lu X M, Wang X and Li Y 2011 J. Phys. A: Math. Theor. 44 375301
|
[30] |
Fan C H, Xiong H N, Huang Y and Sun Z 2013 Quantum Inf. Comput. 13 452
|
[31] |
Plenio M and Virmani B S 2007 Quantum Inf. Comput. 7 001
|
[32] |
Cerf N J and Adami C 1998 Physica D 120 62
|
[33] |
Wang X and Gu S J 2007 J. Phys. A: Math. Theor. 40 10759
|
[34] |
Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
|
[35] |
Singh H, Chakraborty T, Das D, Jeevan H S, Tokiwa Y, Gegenwart P and Mitra C 2013 New J. Phys. 15 113001
|
[36] |
Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
|
[37] |
Li S B, Xu Z X, Dai J H and Xu J B 2006 Phys. Rev. B 73 184411
|
[38] |
Saadatmand S N, Powell B J and McCulloch I P 2015 Phys. Rev. B 91 245119
|
[39] |
Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517-576
|
[40] |
Tth G 2005 Phys. Rev. A 71 010301
|
[41] |
Laskowski W, Markiewicz M, Paterek T and Weinar R 2013 Phys. Rev. A 88 022304
|
[42] |
Dowling M R, Doherty A C and Bartlett S D 2004 Phys. Rev. A 70 062113
|
[43] |
Fan H, Korepin V and Roychowdhury V 2004 Phys. Rev. Lett. 93 227203
|
[44] |
Zad H A 2015 Acta Phys. Pol. B 46 1911
|
[45] |
Gu S J, Li H, Li Y Q and Lin H Q 2004 Phys. Rev. A 70 052302
|
[46] |
Kwek L C, Takahashi Y and Choo K W 2009 J. Phys.: Conf. Ser. 143 012014
|
[47] |
Ivanov N, Richter B J and Schulenburg J 2009 Phys. Rev. B 79 104412
|
[48] |
Han S D, Tufekci T, Spiller T P and Aydiner E 2011 arXiv:quant-ph/1111.2694
|
[49] |
Han S D and Aydiner E 2014 Chin. Phys. B 23 050305
|
[50] |
Rojas O, Souza S M D, Ohanyan V and Khurshudyan M 2011 Phys. Rev. B 83 094430
|
[51] |
Rojas O, Rojas M, Ananikian N S and Souza S M D 2012 Phys. Rev. A 86 042330
|
[52] |
Ananikian N S, Ananikyan L N, Chakhmakhchyan L A and Rojas O 2012 J. Phys.: Condens. Matter 24 256001
|
[53] |
Furman G B, Meerovich V M and Sokolovsky V L 2012 Quantum. Inf. Process 11 1603
|
[54] |
Dalgarno A and Lewis J T 1956 Proc. R. Soc. A 233 70
|
[55] |
Balantekin A B and Malkus A 2010 arXiv:math-ph/1012.4783
|
[56] |
Schwart C 1959 Ann. Phys. 2 159
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|