Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 026401    DOI: 10.1088/1674-1056/25/2/026401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phase transition, elastic and electronic properties of topological insulator Sb2Te3 under pressure: First principle study

Qing Lu(卢清)1, Huai-Yong Zhang(张怀勇)1, Yan Cheng(程 艳)1,2, Xiang-Rong Chen(陈向荣)1, Guang-Fu Ji(姬广富)3
1. Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610065, China;
2. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China;
3. National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China
Abstract  The phase transition, elastic and electronic properties of three phases (phaseI, II, and III) of Sb2Te3 are investigated by using the generalized gradient approximation (GGA) with the PBESOL exchange-correlation functional in the framework of density-functional theory. Some basic physical parameters, such as lattice constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, acoustic velocity, and Debye temperature Θ are calculated. The obtained lattice parameters under various pressures are consistent with experimental data. Phase transition pressures are 9.4GPa (I→II) and 14.1GPa (II→III), which are in agreement with the experimental results. According to calculated elastic constants, we also discuss the ductile or brittle characters and elastic anisotropies of three phases. PhasesI and III are brittle, while phaseII is ductile. Of the three phases, phaseII has the most serious degree of elastic anisotropy and phaseIII has the slightest one. Finally, we investigate the partial densities of states (PDOSs) of three phases and find that the three phases possess some covalent features.
Keywords:  Sb2Te3      phase transition      elastic properties      electronic properties  
Received:  28 June 2015      Revised:  18 October 2015      Accepted manuscript online: 
PACS:  64.60.-i (General studies of phase transitions)  
  62.20.D- (Elasticity)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204192 and 11174214) and Jointly supported by the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF) (Grant No. U1430117).
Corresponding Authors:  Yan Cheng     E-mail:  ycheng66@qq.com

Cite this article: 

Qing Lu(卢清), Huai-Yong Zhang(张怀勇), Yan Cheng(程 艳), Xiang-Rong Chen(陈向荣), Guang-Fu Ji(姬广富) Phase transition, elastic and electronic properties of topological insulator Sb2Te3 under pressure: First principle study 2016 Chin. Phys. B 25 026401

[1] Snyder G J and Tobere E S 2008 Nat. Mater. 7 105
[2] Cao Y Q, Zhao X B, Zhu T J, Zhang X B and Tu J P 2008 Appl. Phys. Lett. 92 143106
[3] Kadel K, Kumari L, Li W Z, Huang J Y and Provencio P P 2011 Nanoscale Res. Lett. 6 57
[4] Venkatasubramanian R, Siivola E, Colpitts T and O'Quinn B 2001 Nature 413 597
[5] Thonhauser T, Scheidemantel T J, Sofo J O, Badding J V and Mahan G D 2003 Phys. Rev. B 68 085201
[6] Larson P 2006 Phys. Rev. B 74 205113
[7] Yin Y, Sone H and Hosaka S 2007 J. Appl. Phys. 102 064503
[8] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[9] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[10] Zhang W, Yu R, Zhang H J, Dai X and Fang Z 2010 New J. Phys. 12 065013
[11] Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X and Xue Q K 2009 Phys. Rev. Lett. 103 266803
[12] Einaga M, Tanabe Y, Nakayama A, Ohmura A, Ishikawa F and Yamada Y 2010 J. Phys. Conf. Ser. 215 012036
[13] Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z and Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24
[14] Anderson T L and Krause H B 1974 Acta Cryst. B 30 1307
[15] Sakai N, Kajiwara T, Takemura K, Minomura S and Fujii Y 1981 Solid State Commun. 40 1045
[16] Jacobsen M K, Kumar R S, Cornelius A L, Sinogeiken S V and Nicol M F 2007 AIP Conf. Proc. 955 171
[17] Gomis O, Vilaplana R, Manjón F J, Rodríguez-Hernández P, Pérez-González E, Muñoz A, Kucek V and Drasar C 2011 Phys. Rev. B 84 174305
[18] Zhao J, Liu H, Ehm L, Chen Z, Sinogeikin S, Zhao Y and Gu G 2011 Inorg. Chem. 50 11291
[19] Souza S M, Poffo C M, Trichês D M, Lima J C, Grandi T A, Polian A and Gauthier M 2012 Physica B 407 3781
[20] Ma Y, Liu G, Zhu P, Wang H, Wang X, Cui Q, Liu J and Ma Y 2012 J. Phys.: Condens. Matter 24 475403
[21] Zhu L, Wang H, Wang Y, Lv J, Ma Y, Cui Q, Ma Y and Zou G 2011 Phys. Rev. Lett. 106 145501
[22] Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[23] Milman V, Winkler B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum. Chem. 77 895.
[24] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[25] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A and Scuseria G E 2008 Phys. Rev. Lett. 101 239702
[26] Vanderbilt D 1990 Phys. Rev. B 41 7892
[27] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[28] Berryman J G and Mech J 2005 Phys. Solids 53 2141
[29] Wu Z, Zhao E, Xiang H, Hao X, Liu X and Meng J 2007 Phys. Rev. B 76 054115
[30] Hill R 1952 Proc. Soc. London A 65 349
[31] Pugh S F 1954 Philos. Mag. 45 823
[32] Cheng C, Lv Z L, Cheng Y and Ji G F 2014 J. Alloys Compd. 603 183
[33] Chu F, He Y, Thoma D J and Mitchell T E 1995 Scr. Metal. Mater. 33 1295
[34] Dyck J S, Chen W, Uher C, Drašar Č and Lošt'ák P 2002 Phys. Rev. B 66 125206
[35] Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[36] Ding A L, Li C M, Wang J, Ao J, Li F, and Chen Z Q 2014 Chin. Phys. B 23 096201
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[8] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[9] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
No Suggested Reading articles found!