Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 020304    DOI: 10.1088/1674-1056/25/2/020304
GENERAL Prev   Next  

Mach-Zehnder interferometer with squeezed and EPR entangled optical fields

Xu-Dong Xu(于旭东)1,3, Wei Li(李卫)1,3, Shi-Yao Zhu(朱诗尧)2, Jing Zhang(张靖)1
1. The State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2. Beijing Computational Science Research Center, Beijing 100084, China;
3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We study a scheme for Mach-Zehnder (MZ) interferometer as a quantum linear device by injecting two-mode squeezed input states into two ports of interferometer. Two-mode squeezed states can be changed into two types of inputs for MZ interferometer: two squeezed states and Einstein-Podolsky-Rosen (EPR) entangled states. The interference patterns of the MZ interferometer vary periodically as the relative phase of the two arms of the interferometer is scanned, and are measured by the balanced homodyne detection system. Our experiments show that there are different interference patterns and periodicity of the output quantum states for two cases which depend on the relative phase of input optical fields. Since MZ interferometer can be used to realize some quantum operations, this work will have the important applications in quantum information and metrology.
Keywords:  quantum information      interferometers  
Received:  28 June 2015      Revised:  07 September 2015      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  07.60.Ly (Interferometers)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB921601), the National Natural Science Foundation of China (Grant Nos. 11234008, 11361161002, and 61571276), the Doctoral Program Foundation of the Ministry of Education China (Grant No. 20111401130001), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2015011007).
Corresponding Authors:  Jing Zhang     E-mail:  jzhang74@aliyun.com

Cite this article: 

Xu-Dong Xu(于旭东), Wei Li(李卫), Shi-Yao Zhu(朱诗尧), Jing Zhang(张靖) Mach-Zehnder interferometer with squeezed and EPR entangled optical fields 2016 Chin. Phys. B 25 020304

[1] Zehnder L 1891 Z. Instrumentenkd 11 275
[2] Mach L 1892 Z. Instrumentenkd 12 89
[3] Caves C M 1981 Phys. Rev. D 23 1693
[4] Xiao M, Wu L A and Kimble H J 1987 Phys. Rev. Lett. 59 278
[5] Lang M D and Caves C M 2013 Phys. Rev. Lett. 111 173601
[6] Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K and Schnabel R 2005 Phys. Rev. Lett. 95 211102
[7] The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962
[8] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733
[9] Kok P, Lee H and Dowling J P 2002 Phys. Rev. A 65 052104
[10] Walther P, Pan J W, Aspelmeyer M, Ursin R, Gasparoni S and Zeilinger A 2004 Nature 429 158
[11] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
[12] Nagata T, Okamoto R, O'Brian J L, Sasaki K and Takeuchi S 2007 Science 316 726
[13] Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[14] Bowen W P, Treps N, Buchler B C, et al. 2003 Phys. Rev. A 67 032302
[15] Li X, Pan Q, Jing J, Zhang J, Xie C and Peng K 2002 Phys. Rev. Lett. 88 047904
[16] Mizuno J, Wakui K, Furusawa A and Sasaki M 2005 Phys. Rev. A 71 012304
[17] D'Ariano G M, Presti P L and Paris M G A 2001 Phys. Rev. Lett. 87 270404
[18] Anisimov P M, Rateman G M, Chiruvelli A, et al. 2010 Phys. Rev. Lett. 104 103602
[19] Zhang Y, Li X, Jin G 2013 Chin. Phys. B 22 114206
[20] Simon R 2000 Phys. Rev. Lett. 84 2726
[21] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[22] Di K, Yu X and Zhang J 2010 Acta Sin. Quantum Opt. 16 241
[23] Yu X, Li W, Jin Y and Zhang J 2014 Sci. China-Phys. Mech. Astron. 57 875
[24] Breitenbach G, Schiller S and Mlynek J 1997 Nature 387 471
[25] Glöckl O, Andersen U L, Lorenz S, Silberhorn C, Korolkova N and Leuchs G 2004 Opt. Lett. 29 1936
[26] Su X, Tan A, Jia X, Pan Q, Xie C and Peng K 2006 Opt. Lett. 31 1133
[27] Zhang J 2003 Phys. Rev. A 67 54302
[28] Chelkowski S, Vahlbruch H, Hage B, Franzen A, Larsten N, Danzmann K and Schnabel R 2005 Phys. Rev. A 71 013806
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[3] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[4] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[5] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[6] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[7] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[8] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[9] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[10] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[11] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[12] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[13] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[14] Entangled-photons generation with quantum dots
Yuan Li(李远), Fei Ding(丁飞), Oliver G Schmidt. Chin. Phys. B, 2018, 27(2): 020307.
[15] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
No Suggested Reading articles found!