Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 020203    DOI: 10.1088/1674-1056/25/2/020203
GENERAL Prev   Next  

Solving unsteady Schrödinger equation using the improved element-free Galerkin method

Rong-Jun Cheng(程荣军)1 and Yu-Min Cheng(程玉民)2
1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China;
2. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
Abstract  

By employing the improved moving least-square (IMLS) approximation, the improved element-free Galerkin (IEFG) method is presented for the unsteady Schrödinger equation. In the IEFG method, the two-dimensional (2D) trial function is approximated by the IMLS approximation, the variation method is used to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. Because the number of coefficients in the IMLS approximation is less than in the moving least-square (MLS) approximation, fewer nodes are needed in the entire domain when the IMLS approximation is used than when the MLS approximation is adopted. Then the IEFG method has high computational efficiency and accuracy. Several numerical examples are given to verify the accuracy and efficiency of the IEFG method in this paper.

Keywords:  meshless method      improved moving least-square (IMLS) approximation      improved element-free Galerkin (IEFG) method      Schrö      dinger equation  
Received:  09 July 2015      Revised:  01 November 2015      Accepted manuscript online: 
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11171208), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY15A020007), the Natural Science Foundation of Ningbo City (Grant No. 2014A610028), and the K. C. Wong Magna Fund in Ningbo University, China.

Corresponding Authors:  Yu-Min Cheng     E-mail:  ymcheng@shu.edu.cn

Cite this article: 

Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民) Solving unsteady Schrödinger equation using the improved element-free Galerkin method 2016 Chin. Phys. B 25 020203

[1] Kivshar Y and Agrawal G P 2003 Optical Solitons : From Fibers to Photonic Crystals (New York: Academic Press)
[2] Deng Y X, Tu C H and Lu F Y 2009 Acta Phys. Sin. 58 3173 (in Chinses)
[3] Zhao L, Sui Z, Zhu Q H, Zhang Y and Zuo Y L 2009 Acta Phys. Sin. 58 4731 (in Chinses)
[4] Hasegawa A 1989 Optical Solitons in Fibers (Berlin: Springer-Verlag)
[5] Dodd R K, Eilbeck J C, Gibbon J D and Morris H C 1982 Solitons and Nonlinear Wave Equations (New York: Academic Press)
[6] Pitaevskii L P and Stringari S 2003 Bose-Einstein Condensation (Oxford: Oxford University Press)
[7] Scott A 1999 Nonlinear Science: Emergence and Dynamics of Coherent Structures (Vol. 1) (Oxford: Oxford University Press)
[8] Arnold A 1998 VLSI Design 6 313
[9] Levy M 2000 Institution of Electrical Engineers, London
[10] Tappert F D 1977 Lecture Notes in Physics (Berlin: Springer)
[11] Kopylov Y V, Popov A V and Vinogradov A V 1995 Opt. Commun. 118 619
[12] Huang W, Xu C, Chu S T and Chaudhuri S K 1992 J. Lightwave Technology 10 295
[13] Subasi M 2002 Numerical Methods for Partial Differential Equations 18 752
[14] Antoine X, Besse C and Mouysett V 2004 Math. Comput. 73 1779
[15] Kalita J C, Chhabra P and Kumar S 2006 J. Comput. Appl. Math. 197 141
[16] Dehghan M and Shokri A 2007 Comput. Math. Appl. 54 136
[17] Dehghan M 2006 Math. Comput. Simul. 71 16
[18] Dehghan M and Mirzaei D 2008 Engineering Analysis with Boundary Elements 32 747
[19] Ang W T and Ang K C 2004 Numerical Methods for Partial Differen-tial Equations 20 843
[20] Belytschko T, Krongauz Y, Organ D, Fleming M and Krysl P 1996 Comput. Method Appl. Mech. Eng. 139 3
[21] Cheng Y M and Li J H 2006 Sci. China Ser. G Phys. Mech. Astron. 49 46
[22] Cheng R J and Cheng Y M 2008 Appl. Numer. Math. 58 884
[23] Peng M J and Cheng Y M 2009 Engineering Analysis with Boundary Elements 33 77
[24] Li D M and Bai F N and Cheng Y M and Liew K M 2012 Comput. Methods Appl. Mech. Eng. 233-236 1
[25] Lancaster P and Salkauskas K 1981 Math. Comput. 37 141
[26] Cheng Y M and Chen M J 2003 Acta Mech. Sin. 35 181
[27] Cheng Y M and Peng M J 2005 Sci. China-Ser. G Phys. Mech. Astron. 48 641
[28] Liew K M, Cheng Y M and Kitipornchai S 2006 Int. J. Numer. Methods Eng. 65 1310
[29] Kitipornchai S, Liew K M and Cheng Y M 2005 Comput. Mech. 36 13
[30] Liew K M, Cheng Y M and Kitipornchai S 2005 Int. J. Numer. Methods Eng. 64 1610
[31] Zhang Z, Liew K M and Cheng Y M 2008 Engineering Analysis with Boundary Elements 32 100
[32] Zhang Z, Liew K M, Cheng Y M and Li Y Y 2008 Engineering Anal-ysis with Boundary Elements 32 241
[33] Zhang Z, Wang J F, Cheng Y M and Liew K M 2013 Sci. China-Phys. Mech. Astron. 56 1568
[34] Zhang Z, Cheng Y M and Liew K M 2013 Engineering Analysis withBoundary Elements 37 1576
[35] Ren H P, Cheng Y M and Zhang W 2009 Chin. Phys. B 18 4065
[36] Ren H P, Cheng Y M and Zhang W 2010 Sci. China-Ser. G Phys. Mech. Astron. 53 758
[37] Ren H P and Cheng Y M 2011 Int. J. Appl. Mech. 3 735
[38] Ren H P and Cheng Y M 2012 Engineering Analysis with Boundary Elements 36 873
[39] Sun F X, Wang J F, Cheng Y M and Huang A X 2015 Appl. Numer. Math. 98 79
[40] Cheng R J and Liew K M 2012 Engineering Analysis with Boundary Elements 36 203
[41] Cheng R J and Liew K M 2009 Comput. Mech. 45 1
[42] Cheng R J and Liew K M 2012 Engineering Analysis with Boundary Elements 36 1322
[43] Cheng R J and Liew K M 2012 Comput. Method Appl. Mech. Eng. 245-246 132
[44] Wang J F, Sun F X and Cheng Y M 2012 Chin. Phys. B 21 090204
[45] Wang J F, Wang J F, Sun F X and Cheng Y M 2013 Int. J. Comput. Methods 10 1350043
[46] Sun F X, Wang J F, Cheng Y M and Huang A X 2015 Appl. Numer. Math. 98 79
[47] Chen L and Cheng Y M 2010 Sci. China-Ser. G Phys. Mech. Astron. 53 954
[48] Chen L and Cheng Y M 2010 Chin. Phys. B 19 090204
[49] Chen L, Cheng Y M and Ma H P 2015 Comput. Mech. 55 591
[50] Peng M J, Liu P and Cheng Y M 2009 Int. J. Appl. Mech. 1 367
[51] Peng M J, Li D M and Cheng Y M 2011 Engineering Structure 33 127
[52] Li D M, Peng M J and Cheng Y M 2011 Sci. China-Ser. G Phys. Mech. Astron. 41 1003
[53] Cheng Y M, Li R X and Peng M J 2012 Chin. Phys. B 21 090205
[54] Bai F N, Li D M, Wang J F and Cheng Y M 2012 Chin. Phys. B 21 020204
[55] Cheng Y M, Liu C, Bai F N and Peng M J 2015 Chin. Phys. B 24 100202
[56] Deng Y J, Liu C, Peng M J and Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[8] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[9] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[10] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[11] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[12] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[13] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[14] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[15] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
No Suggested Reading articles found!