|
|
Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator |
Shun Wang(王顺) and Wei-Chao Jiang(姜维超)† |
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China |
|
|
Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth exterior complex scaling (SECS) absorbing method and Arnoldi propagation method. Such combination has not been reported in the literature. The proposed scheme is particularly useful in the applications involving long-time wave propagation. The SECS is a wonderful absorber, but its application results in a non-Hermitian Hamiltonian, invalidating propagators utilizing the Hermitian symmetry of the Hamiltonian. We demonstrate that the routine Arnoldi propagator can be modified to treat the non-Hermitian Hamiltonian. The efficiency of the proposed scheme is checked by tracking the time-dependent electron wave packet in the case of both weak extreme ultraviolet (XUV) and strong infrared (IR) laser pulses. Both perfect absorption and stable propagation are observed.
|
Received: 03 April 2021
Revised: 04 June 2021
Accepted manuscript online: 07 July 2021
|
PACS:
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074265 and 11804233). |
Corresponding Authors:
Wei-Chao Jiang
E-mail: jiang.wei.chao@szu.edu.cn
|
Cite this article:
Shun Wang(王顺) and Wei-Chao Jiang(姜维超) Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator 2022 Chin. Phys. B 31 013201
|
[1] Miyagi H and Madsen L B 2016 Phys. Rev. A 93 033420 [2] Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y, Smirnova O, Bauer D, Popruzhenko S V and Vrakking M J J 2011 Science 331 61 [3] Pazourek R, Feist J, Nagele S and Burgdörfer J 2012 Phys. Rev. Lett. 108 163001 [4] Jiang W C, Shan J Y, Gong Q H and Peng L Y 2015 Phys. Rev. Lett. 115 153002 [5] Pazourek R, Nagele S and Burgdörfer J 2015 Rev. Mod. Phys. 87 765 [6] Peng L Y, Jiang W C, Geng J W, Xiong W H and Gong Q H 2015 Phys. Rep. 575 1 [7] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. A 45 4998 [8] Tong X M, Hino K and Toshima N 2006 Phys. Rev. A 74 031405 [9] Riss U V and Meyer H D 1995 J. Phys. B 28 1475 [10] Riss U and Meyer H 1996 J. Chem. Phys. 105 1409 [11] Santra R 2006 Phys. Rev. A 74 034701 [12] Collino F 1997 J. Comput. Phys. 131 164 [13] Nissen A, Karlsson H O and Kreiss G 2010 J. Chem. Phys. 133 054306 [14] Scrinzi A, Stimming H and Mauser N 2014 J. Comput. Phys. 269 98 [15] McCurdy C W, Baertschy M and Rescigno T N 2004 J. Phys. B 37 R137 [16] Scrinzi A 2010 Phys. Rev. A 81 053845 [17] Orimo Y, Sato T, Scrinzi A and Ishikawa K L 2018 Phys. Rev. A 97 023423 [18] He F, Ruiz C and Becker A 2007 Phys. Rev. A 75 053407 [19] Tao L, Vanroose W, Reps B, Rescigno T N and McCurdy C W 2009 Phys. Rev. A 80 063419 [20] Rescigno T N, Baertschy M, Byrum D and McCurdy C W 1997 Phys. Rev. A 55 4253 [21] Regge T 1959 Il Nuovo Cimento 14 951 [22] Regge T 1960 Il Nuovo Cimento 18 947 [23] Balslev E and Combes J M 1971 Commun. Math. Phys. 22 280 [24] Simon B 1979 Phys. Lett. A 71 211 [25] Simon B 1972 Commun. Math. Phys. 27 1 [26] Simon B 1973 Ann. Math. 97 247 [27] McCurdy C W, Stroud C K and Wisinski M K 1991 Phys. Rev. A 43 5980 [28] McCurdy C W and Stroud C K 1991 Comput. Phys. Commun. 63 323 [29] McCurdy C W, Horner D A and Rescigno T N 2002 Phys. Rev. A 65 042714 [30] Weinmüller M, Weinmüller M, Rohland J and Scrinzi A 2017 J. Comput. Phys. 333 199 [31] Dallwig S, Fahrer N and Schlier C 1992 Chem. Phys. Lett. 191 69 [32] Suno H, Andric L, Grozdanov T P and McCarroll R 2000 Physics Letters A 265 377 [33] Milfeld K F and Moiseyev N 1986 Chem. Phys. Lett. 130 145 [34] Park T J and Light J C 1986 J. Chem. Phys. 85 5870 [35] Smyth E S, Parker J S and Taylor K 1998 Comput. Phys. Commun. 114 1 [36] Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I and DiMauro L F 2006 Phys. Rev. Lett. 96 133001 [37] Feist J, Nagele S, Pazourek R, Persson E, Schneider B I, Collins L A and Burgdörfer J 2008 Phys. Rev. A 77 043420 [38] Jiang W C, Xiong W H, Zhu T S, Peng L Y and Gong Q H 2014 J. Phys. B 47 091001 [39] Guan X, Bartschat K and Schneider B I 2011 Phys. Rev. A 83 043403 [40] Jiang W C, Peng L Y, Geng J W and Gong Q H 2013 Phys. Rev. A 88 063408 [41] Zielinski A, Majety V P and Scrinzi A 2016 Phys. Rev. A 93 023406 [42] Jiang W C and Tian X Q 2017 Opt. Express 25 26832 [43] Karlsson H O 1998 J. Chem. Phys. 109 9366 [44] Moiseyev N 1998 J. Phys. B 31 1431 [45] Rescigno T N and McCurdy C W 2000 Phys. Rev. A 62 032706 [46] Dundas D 2002 Phys. Rev. A 65 023408 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|