Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110202    DOI: 10.1088/1674-1056/abff31
GENERAL Prev   Next  

Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients

Ying Yang(杨颖)1, Yu-Xiao Gao(高玉晓)2, and Hong-Wei Yang(杨红卫)1,†
1 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China;
2 Qingdao West Coast New Area Hospital of Traditional Chinese Medicine, Qingdao 266590, China
Abstract  The research of rogue waves is an advanced field which has important practical and theoretical significances in mathematics, physics, biological fluid mechanics, oceanography, etc. Using the reductive perturbation theory and long wave approximation, the equations governing the movement of blood vessel walls and the flow of blood are transformed into high-order nonlinear Schrödinger (NLS) equations with variable coefficients. The third-order nonlinear Schrödinger equation is degenerated into a completely integrable Sasa-Satsuma equation (SSE) whose solutions can be used to approximately simulate the real rogue waves in the vessels. For the first time, we discuss the conditions for generating rogue waves in the blood vessels and effects of some physiological parameters on the rogue waves. Based on the traveling wave solutions of the fourth-order nonlinear Schrödinger equation, we analyze the effects of the higher order terms and the initial deformations of the blood vessel on the wave propagation and the displacement of the tube wall. Our results reveal that the amplitude of the rogue waves are proportional to the initial stretching ratio of the tube. The high-order nonlinear and dispersion terms lead to the distortion of the wave, while the initial deformation of the tube wall will influence the wave amplitude and wave steepness.
Keywords:  rogue wave, variable-coefficients high-order nonlinear Schrö      dinger equation, deformable blood vessels, Sasa-Satsuma equation  
Received:  17 March 2021      Revised:  07 April 2021      Accepted manuscript online:  08 May 2021
PACS:  02.30.Jr (Partial differential equations)  
  03.65.Ge (Solutions of wave equations: bound states)  
  87.19.Yt  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975143), Nature Science Foundation of Shandong Province of China (Grant No. ZR2018MA017), the Taishan Scholars Program of Shandong Province, China (Grant No. ts20190936), and the Shandong University of Science and Technology Research Fund (Grant No. 2015TDJH102).
Corresponding Authors:  Hong-Wei Yang     E-mail:  hwyang1979@163.com

Cite this article: 

Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫) Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients 2021 Chin. Phys. B 30 110202

[1] Womersley J R 1955 J. Physiol. 127 553
[2] Womersley J R 1957 Phys. Med. Biol. 2 178
[3] McDonald D A 1952 J. Physiol. 118 328
[4] McDonald D A 1955 J. Physiol. 127 533
[5] Yomosa S 1987 J. Phys. Soc. Jpn. 56 506
[6] Belardinelli E and Cavalcanti S 1992 J. Biomech. 25 1337
[7] Hashizume Y 2007 J. Phys. Soc. Jpn. 54 3305
[8] Erbay H, Erbay S, Dost S, et al. 1992 Acta. Mech. 95 87
[9] Choy Y, Tay K and Ong C 2013 Matematika 28 1
[10] Adem A, Ntsime B, Biswas A, et al. 2020 Phys. Lett. A 27 126721
[11] Chen J, Chen Y and Feng B F 2014 J. Phys. A-Math. Theor. 47 355203
[12] Chen J, Chen L, Feng B F, et al. 2019 Phys. Rev. E 100 052216
[13] Nasreen N, Seadawy A R, Lu D, et al. 2019 Results Phys. 15 102641
[14] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[15] Zhang X, Chen Y and Tang X 2018 Comput. Math. Appl. 76 1938
[16] Ankiewicz A and Akhmediev N 2018 Nonlinear Dyn.
[17] Ankiewicz A, Wang Y, Wabnitz S, et al. 2014 Phys. Rev. E 89 012907
[18] Bandelow U and Akhmediev N 2012 Phys. Lett. A 376 1558
[19] Chen S 2013 Phys. Rev. E 88 023202
[20] Liu Y, Wen X and Wang D S 2019 Comput. Math. Appl. 77 947
[21] Lu D, Seadawy A R, Wang J, et al. 2019 Pramana 93 44
[22] Biazar J, Mohammad A A and Farideh S 2015 Appl. Math. Model. 39 1291
[23] Liu S, Fu Z, et al. 2001 Phys. Lett. A 289 69
[24] Kumar R, Kaushal R S and Prasad A 2010 Pramana 75 607
[25] Chen L G, Yang L G, Zhang R G, et al. 2019 Results Phys. 13 102280
[26] Zeidan D, Chi K C, Lu T, et al. 2020 Math. Method. Appl. Sci 43 2171
[27] Liu Q S, Chen L G 2020 Complexity 9075823
[28] Gao M H, Zhang Y F, Wang J F, et al. 2015 Mathematical Modeling and its Applications 4 10
[29] Zhang Z, Yang X, Li B, et al. 2019 Chin. Phys. B 28 110201
[30] Qian C, Rao J G, Liu Y B, et al. 2016 Chin. Phys. Lett. 33 110201
[31] Inc M, Ulutas E and Biswas A 2013 Chin. Phys. B 22 060204
[32] Li L and Wang M 2009 Appl. Math. Comput. 208 440
[33] Kodama Y and Taniuti T 2007 J. Phys. Soc. Jpn. 47 1706
[34] Zhang S Y and Zhang T 2010 Chin. Phys. B 19 110302
[35] Demiray H 1976 Bull. Math. Biology. 38 701
[36] Grimshaw R, Pelinovsky E and Poloukhina O 2002 Nonlinear Proc. Geoph. 9 221
[1] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[5] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[6] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[7] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[8] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[9] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[10] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[11] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[12] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[13] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[14] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
[15] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
No Suggested Reading articles found!