Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040301    DOI: 10.1088/1674-1056/ac3392
GENERAL Prev   Next  

Exact solutions of the Schrödinger equation for a class of hyperbolic potential well

Xiao-Hua Wang(王晓华)1, Chang-Yuan Chen(陈昌远)1,†, Yuan You(尤源)1, Fa-Lin Lu(陆法林)1, Dong-Sheng Sun(孙东升)1, and Shi-Hai Dong(董世海)2,3,‡
1 School of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng 224007, China;
2 Research Center for Quantum Physics, Huzhou University, Huzhou 313000, China;
3 Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, C. P 07700, CDMX, Mexico
Abstract  We propose a new scheme to study the exact solutions of a class of hyperbolic potential well. We first apply different forms of function transformation and variable substitution to transform the Schrödinger equation into a confluent Heun differential equation and then construct a Wronskian determinant by finding two linearly dependent solutions for the same eigenstate. And then in terms of the energy spectrum equation which is obtained from the Wronskian determinant, we are able to graphically decide the quantum number with respect to each eigenstate and the total number of bound states for a given potential well. Such a procedure allows us to calculate the eigenvalues for different quantum states via Maple and then substitute them into the wave function to obtain the expected analytical eigenfunction expressed by the confluent Heun function. The linearly dependent relation between two eigenfunctions is also studied.
Keywords:  hyperbolic potential well      Schrödinger equation      Wronskian determinant      confluent Heun function  
Received:  08 August 2021      Revised:  14 October 2021      Accepted manuscript online:  27 October 2021
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Db (Functional analytical methods)  
  02.30.-f (Function theory, analysis)  
  02.60.Jh (Numerical differentiation and integration)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975196) and partially by SIP, Instituto Politecnico Nacional (IPN), Mexico (Grant No. 20210414). Prof. Dong started this work on Sabbatical Leave of IPN.
Corresponding Authors:  Chang-Yuan Chen, Shi-Hai Dong     E-mail:  chency@yctu.edu.cn;dongsh2@yahoo.com

Cite this article: 

Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海) Exact solutions of the Schrödinger equation for a class of hyperbolic potential well 2022 Chin. Phys. B 31 040301

[1] Landau L D and Lifshitz E M 1979 Quantum Mechanics (Non-RelativisticTheory), 3rd edn. (New York:Pergamon Press) pp. 50-55, 60-66
[2] Schiff L I 1968 Quantum Mechanics, 3d edn. (London:McGraw-Hill) pp. 19-44
[3] Zeng J Y 2007 Quantum Mechanics, Vol. I, 4th edn. (Beijing:Science Press) pp. 42-50, 60-70 (in Chinese)
[4] Hartmann R R, Robinson N J and Portnoi M E 2010 Phys. Rev. B 81 245431
[5] Hartmann R R, Shelykh I A and Portnoi M E 2011 Phys. Rev. B 84 035437
[6] Hartmann R R and Portnoi M E 2014 Phys. Rev. A 89 012101
[7] Sun G H, Dusan P, Oscar C N and Dong S H 2015 Chin. Phys. B 24 100303
[8] Hassanabadi H, Zarrinkamar S and Yazarloo B H 2013 Chin. Phys. B 22 060202
[9] Bahlouli H and Alhaidari A D 2010 Phys. Scr. 81 025008
[10] Wen F K, Yang Z Y, Liu C, Yang W L and Zhang Y Z 2014 Commun. Theor. Phys. 61 153
[11] Arda A and Sever R 2015 Commun. Theor. Phys. 64 269
[12] Dong S, Sun G H, Falaye B J and Dong S H 2016 Eur. Phys. J. Plus 131 176
[13] Hall R L and Saad N 2016 Eur. Phys. J. Plus 131 277
[14] Moroz A and Miroshnichenko A E 2020 Eur. Phys. J. Plus 135 73
[15] Downing C A 2013 J. Math. Phys. 54 072101
[16] Hartmann R R 2014 J. Math. Phys. 55 012105
[17] Agboola D 2014 J. Math. Phys. 55 052102
[18] Pertsch D 1990 J. Phys. A 23 4145
[19] Xie Q T 2012 J. Phys. A 45 175302
[20] Chen B H, Wu Y and Xie Q T 2013 J. Phys. A 46 035301
[21] Kufel D, Chomet H and Figueira de Morisson Faria C 2021 J. Phys. A 54 035304
[22] Dong Q, Torres-Arenas A J, Sun G H, Camacho-Nieto O, Femmam S and Dong S H 2019 J. Math. Chem. 57 1924
[23] Dong Q, Sun G H, Jing J and Dong S H 2019 Phys. Lett. A 383 270
[24] Pöschl G and Teller E 1933 Z. Phys. 83 143
[25] Flügge S 1999 Practical Quantum Mechanics (Berlin:Springer-Verlag) pp. 94-100
[26] Chen C Y and Hu S Z 1995 Acta Phys. Sin. 44 9 (in Chinese)
[27] Schechter M 1981 Operator Methods in Quantum Mechanics (New York:North Holland) pp. 73-77
[28] Chadan K, Khuri N N, Martin A and Wu T T 2003 J. Math. Phys. 44 406
[29] Sun G H, Chen C Y, Taud H, Yáñez-Márquez C and Dong S H 2020 Phys. Lett. A 384 126480
[30] Chen C Y, Wang X H, You Y, Sun G H and Dong S H 2020 Int. J. Quantum Chem. 120 e26336
[31] Chen C Y, You Y, Wang X H, Lu F L, Sun D S and Dong S H 2021 Results Phys. 24 104115
[32] Chen C Y, Sun D S, Sun G H, Wang X H, You Y and Dong S H 2021 Int. J. Quantum Chem. 121 e26546
[33] Chen C Y, Sun G H, Wang X H, Sun D S, You Y, Lu F L and Dong S H 2021 Acta Phys. Sin. 70 180301 (in Chinese)
[34] Fiziev P P 2010 J. Phys. A 43 035203
[35] Fiziev P P 2010 Class. Quantum Grav. 27 135001
[36] Karayer H, Demirhan D and Büyükkılıç F 2015 J. Math. Phys. 56 063504
[37] Al-Gwaiz M A 2008 Sturm-Liouville Theory and its Applications (London:Springer-Verlag London Limited) pp. 45-46, 55-59
[38] Cheng J C 2016 The Equations for Mathematical Physics and Their Approximate Methods, 2nd edn. (Beijing:Science Press) pp. 109-111, 133-135 (in Chinese)
[39] Wang H Y 2017 Mathematics for Physicists (Beijing:Science Press) pp. 130-146
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[5] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[6] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[7] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[8] The Wronskian technique for nonlinear evolution equations
Jian-Jun Cheng(成建军) and Hong-Qing Zhang(张鸿庆). Chin. Phys. B, 2016, 25(1): 010506.
[9] Wronskian and Grammian solutions for (3+1)-dimensional Jimbo–Miwa equation
Su Peng-Peng (苏朋朋), Tang Ya-Ning (唐亚宁), Chen Yan-Na (陈妍呐). Chin. Phys. B, 2012, 21(12): 120509.
No Suggested Reading articles found!