Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 020201    DOI: 10.1088/1674-1056/abbbfc
GENERAL   Next  

Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications

Xiaoyong Qian(钱骁勇)1, Dianchen Lu(卢殿臣)1, Muhammad Arshad1,†, and Khurrem Shehzad2
1 Faculty of Science, Jiangsu University, Zhenjiang 212013, China; 2 Department of Mathematics and Statistics, University of Agriculture Faisalabad, Pakistan
Abstract  We study the traveling wave and other solutions of the perturbed Kaup-Newell Schrödinger dynamical equation that signifies long waves parallel to the magnetic field. The wave solutions such as bright-dark (solitons), solitary waves, periodic and other wave solutions of the perturbed Kaup-Newell Schrödinger equation in mathematical physics are achieved by utilizing two mathematical techniques, namely, the extended F-expansion technique and the proposed exp\((-\phi(\xi))\)-expansion technique. This dynamical model describes propagation of pluses in optical fibers and can be observed as a special case of the generalized higher order nonlinear Schrödinger equation. In engineering and applied physics, these wave results have key applications. Graphically, the structures of some solutions are presented by giving specific values to parameters. By using modulation instability analysis, the stability of the model is tested, which shows that the model is stable and the solutions are exact. These techniques can be fruitfully employed to further sculpt models that arise in mathematical physics.
Keywords:  extended F-expansion method      generalized $\exp(-\phi(\xi))$-expansion technique      perturbed Kaup-Newell Schrödinger equation      traveling wave solutions  
Received:  28 July 2020      Revised:  02 September 2020      Accepted manuscript online:  28 September 2020
PACS:  02.30.Jr (Partial differential equations)  
  02.70.Wz (Symbolic computation (computer algebra))  
  04.20.Jb (Exact solutions)  
  03.67.-a (Quantum information)  
Fund: Project supported by the China Post-doctoral Science Foundation (Grant No. 2019M651715).
Corresponding Authors:  Corresponding author. E-mail: marshad@ujs.edu.cn; muhammad.arshad18@yahoo.com   

Cite this article: 

Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications 2021 Chin. Phys. B 30 020201

1 Gibbon J D1985 Philos. Trans. R. Soc. London A 315 335
2 Arshad M, Lu D, Rehman M-Ur, Ahmed I and Sultan A M 2019 Physica Scripta 94 105202
3 Kaup D J and Newell A C 1978 J. Math. Phys. 19 798
4 Arshad M, Seadawy A R and Lu D2017 Optik 128 40
5 Lu D, Seadawy A R, Wang J, Arshad M and Farooq U 2019 Pramana-J. Phys. 93 44
6 Arshad M, Seadawy A R, Lu D and Wang J 2017 Chin. J. Phys. 55 780
7 Arshad M, Seadawy A R and Lu D 2017 Superlatt. Microstructures 112 422
8 Nasreen N, Lu D and Arshad M 2018 Optik 161 221
9 Wadati M and Sogo K 1983 J. Phys. Soc. Jpn. 52 394
10 Sarwar A, Gang T, Arshad M and Ahmed I 2020 Physica Scripta 95 045227
11 Liu W, Zhang Y and He J2018 Romanian Rep. Phys. 70 106
12 Ekici M, Mirzazadeh M, Sonmezoglu A, Ullah M Z, Zhou Q, Moshokoa S P, Biswas A and Belic M 2017 J. Nonlinear Opt. Phys. Mater. 26 1750005
13 Lu D and Hong B 2008 Appl. Mathemat. Comput. 199 572
14 Ahmed I, Seadawy A R and Lu D 2019 Physica Scripta 94 055205
15 Liu G Q and Ying H P 2014 Chin. Phys. B 23 050502
16 Arshad M, Seadawy A R and Lu D2017 Optik 28 40
17 Lu D, Seadawy A R and Arshad M 2018 Opt. Quantum Electron. 50 23
18 Jin-Chun H and Zong-Yun C 2008 Commun. Theor. Phys. 50 1369
19 Liu C S 2010 Comput. Phys. Commun. 181 317
20 Guha P 2002 Rep. Math. Phys. 50 1
21 Zhihua Y and Yunbo Z 2007 Appl. Math. J. Chin. Univ. 22 413
22 Biswas A 2005 Phys. Plasmas 12 022306
23 Arshed S, Biswas A, Abdelatyd M, Zhoue Q, Moshokoac S P and Belicf M 2018 Optik 172 766
24 Biswas A, Yildrim Y, Yasar E, Zhou, Moshokoa S P and Belic M 2018 Optik 167 121
25 Yang J Y and Ma W X 2016 Mod. Phys. Lett. B 30 1650381
26 Huang Y and Liang L 2015 Theor. Math. Phys. 184 1106
27 Agrawal G P2013 Nonlinear Fiber Optics 5th edn (New York: Academic Press)
28 Seadawy A R, Arshad M and Lu D 2017 Eur. Phys. J. Plus 132 162
29 Saha M and Sarma A K 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 2420
30 Yang J Y and Ma W X 2016 Mod. Phys. Lett. B 30 1650381
31 Menyuk C R 1987 IEEE J. Quantum Electron. 23 174
32 Arshad M, Seadawy A R and Lu D 2017 J. Electromagn. Waves Appl. 31 1711
[1] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[2] Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation
Li-Juan Shi(师利娟), Zhen-Shu Wen(温振庶). Chin. Phys. B, 2019, 28(4): 040201.
[3] Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation
Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟). Chin. Phys. B, 2018, 27(9): 090201.
[4] A connection between the (G'/G)-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation
Zhao Yin-Long (赵银龙), Liu Yin-Ping (柳银萍), and Li Zhi-Bin (李志斌). Chin. Phys. B, 2010, 19(3): 030306.
[5] Applications of F-expansion method to the coupled KdV system
Li Bao-An (李保安), Wang Ming-Liang (王明亮). Chin. Phys. B, 2005, 14(9): 1698-1706.
[6] Exact solutions for the coupled Klein--Gordon--Schr?dinger equations using the extended F-expansion method
He Hong-Sheng (何红生), Chen Jiang (陈江), Yang Kong-Qing (杨孔庆). Chin. Phys. B, 2005, 14(10): 1926-1931.
No Suggested Reading articles found!