Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 083301    DOI: 10.1088/1674-1056/abea85

Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations

Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超)
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  We develop a numerical scheme for solving the one-dimensional (1D) time-dependent Schrödinger equation (TDSE), and use it to study the strong-field photoionization of the atomic hydrogen. The photoelectron energy spectra obtained for pulses ranging from XUV to near infrared are compared in detail to the spectra calculated with our well-developed code for accurately solving the three-dimensional (3D) TDSE. For XUV pulses, our discussions cover intensities at which the ionization is in the perturbative and nonperturbative regimes. For pulses of 400 nm or longer wavelengths, we distinguish the multiphoton and tunneling regimes. Similarities and discrepancies between the 1D and 3D calculations in each regime are discussed. The observed discrepancies mainly originate from the differences in the transition matrix elements and the energy level structures created in the 1D and 3D calculations.
Keywords:  time-dependent Schrö      dinger equation (TDSE), strong-field ionization, photoelectron spectra, dynamic interference  
Received:  26 November 2020      Revised:  08 February 2021      Accepted manuscript online:  01 March 2021
PACS:  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Gant Nos. 12074265, 11804233, and 11575118), the National Key Research and Development Project of China (Grant No. 2017YFF0106500), the Natural Science Foundation of Guangdong, China (Grant Nos. 2018A0303130311 and 2021A1515010082), and the Shenzhen Fundamental Research Program (Grant Nos. KQJSCX20180328093801773, JCYJ20180305124540632, and JCYJ20190808121405740).
Corresponding Authors:  Wei-Chao Jiang     E-mail:

Cite this article: 

Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超) Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations 2021 Chin. Phys. B 30 083301

[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[2] Pazourek R, Nagele S and Burgdörfer J 2015 Rev. Mod. Phys. 87 765
[3] Ueda K, Sokell E, Schippers S, Aumayr F, Sadeghpour H, Burgdörfer J, Lemell C, Tong X M, Pfeifer T, Calegari F, Palacios A, Martin F, Corkum P, Sansone G, Gryzlova E V, Grum-Grzhimailo A N, Piancastelli M N, Weber P M, Steinle T, Amini K, Biegert J, Berrah N, Kukk E, Santra R, Müller A, Dowek D, Lucchese R R, McCurdy C W, Bolognesi P, Avaldi L, Jahnke T, Schöffler M S, Dörner R, Mairesse Y, Nahon L, Smirnova O, Schlathölter T, Campbell E E B, Rost J M, Meyer M and Tanaka K A 2019 J. Phys. B: At. Mol. Opt. Phys. 52 171001
[4] Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227
[5] Zhang L 2014 Phys. Rev. Lett. 112 193002
[6] Chen Z, Liu F and Wen H 2019 Chin. Phys. B 28 123401
[7] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
[8] Huang Y Y, Lai X Y and Liu X J 2018 Chin. Phys. B 27 73204
[9] Zuo R X, Song X H, Liu X W, Yang S D and Yang W F 2019 Chin. Phys. B 28 94208
[10] Liu L, Zhao J, Yuan J M and Zhao Z X 2019 Chin. Phys. B 28 114205
[11] Baghery M, Saalmann U and Rost J M 2017 Phys. Rev. Lett. 118 143202
[12] Jiang W C and Burgdörfer J 2018 Opt. Express 26 19921
[13] Wang N and Liu A 2019 Chin. Phys. B 28 083403
[14] Jiang W C, Chen S G, Peng L Y and Burgdörfer J 2020 Phys. Rev. Lett. 124 043203
[15] Xu Y and Bian X B 2020 Chin. Phys. B 29 23202
[16] Brée C, Hofmann M, Demircan A, Morgner U, Kosareva O, Savel'ev A, Husakou A, Ivanov M and Babushkin I 2017 Phys. Rev. Lett. 119 243202
[17] Xu L and Fu L 2019 Phys. Rev. Lett. 122 253202
[18] Reed V C and Burnett K 1991 Phys. Rev. A 43 6217
[19] Dörr M 2000 Opt. Express 6 111
[20] Zhao J and Lein M 2013 Phys. Rev. Lett. 111 043901
[21] de Aldana J V and Roso L 1999 Opt. Express 5 144
[22] Kylstra N J, Worthington R A, Patel A, Knight P L, de Aldana J V and Roso L 2000 Phys. Rev. Lett. 85 1835
[23] Javanainen J, Eberly J H and Su Q 1988 Phys. Rev. A 38 3430
[24] Geltman S 2011 J. At. Mol. Phys. 2011 573179
[25] Silaev A A, Ryabikin M Y and Vvedenskii N V 2010 Phys. Rev. A 82 033416
[26] Majorosi S, Benedict M G and Czirják A 2018 Phys. Rev. A 98 023401
[27] Gordon A, Santra R and Kärtner F X 2005 Phys. Rev. A 72 063411
[28] Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G and Yang Y J 2014 Chin. Phys. B 23 053202
[29] Dziubak T and Matulewski J 2010 Eur. Phys. J. D 59 321
[30] Rae S C, Chen X and Burnett K 1994 Phys. Rev. A 50 1946
[31] Chen Y J, Liu J and Hu B 2009 Phys. Rev. A 79 033405
[32] Yu H, Zuo T and Bandrauk A D 1998 J. Phys. B: At. Mol. Opt. Phys. 31 1533
[33] Liu C, Nakajima T, Sakka T and Ohgaki H 2008 Phys. Rev. A 77 043411
[34] Loudon R 1959 Am. J. Phys. 27 649
[35] Schwengelbeck U and Faisal F H M 1994 Phys. Rev. A 50 632
[36] Tong X M, Hino K and Toshima N 2006 Phys. Rev. A 74 031405
[37] Wang S, Jiang W C, Tian X Q and Sun H B 2020 Phys. Rev. A 101 053417
[38] Jiang W C, Tong X M, Pazourek R, Nagele S and Burgdörfer J 2020 Phys. Rev. A 101 053435
[39] Rescigno T N and McCurdy C W 2000 Phys. Rev. A 62 032706
[40] Rayson M J 2007 Phys. Rev. E 76 026704
[41] Schneider B I and Collins L A 2005 J. Non-Cryst. Solids 351 1551
[42] Jiang W C and Tian X Q 2017 Opt. Express 25 26832
[43] Demekhin P V and Cederbaum L S 2012 Phys. Rev. Lett. 108 253001
[44] Wang M X, Liang H, Xiao X R, Chen S G, Jiang W C and Peng L Y 2018 Phys. Rev. A 98 023412
[45] Keldysh L V 1965 Sov. Phys. JETP 20 1307
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[3] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[4] Role of Bloch oscillation in high-order harmonic generation from periodic structure
Lu Liu(刘璐), Jing Zhao(赵晶), Jian-Min Yuan(袁建民), Zeng-Xiu Zhao(赵增秀). Chin. Phys. B, 2019, 28(11): 114205.
[5] Above-threshold ionization of hydrogen atom in chirped laser fields
Yuan-Yuan Ni(倪园园), Song-Feng Zhao(赵松峰), Xiao-Yong Li(李小勇), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信). Chin. Phys. B, 2018, 27(7): 073203.
[6] Control of electron localization in the dissociation of H2+ and its isotopes with a THz pulse
Jia Zheng-Mao (贾正茂), Zeng Zhi-Nan (曾志男), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展), Deng Yun-Pei (邓蕴沛). Chin. Phys. B, 2015, 24(1): 013204.
[7] Semi-classical explanation for the dissociation control of H2+
Jia Zheng-Mao (贾正茂), Zeng Zhi-Nan (曾志男), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展). Chin. Phys. B, 2014, 23(8): 083201.
[8] Two-dimensional photoelectron momentum distribution of hydrogen in intense laser field
Sun Chang-Ping(孙长平), Zhao Song-Feng(赵松峰), Chen Jian-Hong(陈建宏), and Zhou Xiao-Xin(周效信) . Chin. Phys. B, 2011, 20(11): 113201.
No Suggested Reading articles found!