Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 128201    DOI: 10.1088/1674-1056/25/12/128201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 ceramics prepared by high energy ball-milling and conventional sintering

H Mahfoz Kotb1,2, Mohamad M Ahmad1,3
1. Department of Physics, College of Science, King Faisal University, Al-Hassa 31982, Saudi Arabia;
2. Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Egypt;
3. Department of Physics, Faculty of Science, Assiut University, The New Valley, El-Kharga 72511, Egypt
Abstract  

We report on the measurements of the electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 (NLCTO) ceramics prepared by high energy ball-milling and conventional sintering without any calcination steps. The x-ray powder diffraction analysis shows that pure perovskite-like CCTO phase is obtained after sintering at 1025℃-1075℃. Higher sintering temperatures result in multi-phase ceramics due to thermal decomposition. Scanning electron microscope observations reveal that the grain size is in a range of ~3 μm-5 μm for these ceramics. Impedance spectroscopy measurements performed in a wide frequency range (1 Hz-10 MHz) and at various temperatures (120 K-470 K) are used to study the dielectric and electrical properties of NLCTO ceramics. A good compromise between high ε' (5.7×103 and 4.1×103 at 1.1 kHz and 96 kHz, respectively) and low tanδ (0.161 and 0.126 at 1.1 kHz and 96 kHz, respectively) is obtained for the ceramic sintered at 1050℃. The observed high dielectric constant behavior is explained in terms of the internal barrier layer capacitance effect.

Keywords:  ceramics      sintering      dielectric loss and relaxation      electrical  
Received:  03 July 2016      Revised:  23 August 2016      Accepted manuscript online: 
PACS:  82.45.Xy (Ceramics in electrochemistry)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  77.22.Gm (Dielectric loss and relaxation)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
Corresponding Authors:  H Mahfoz Kotb, Mohamad M Ahmad     E-mail:  hkotb@kfu.edu.sa;mmohamad@kfu.edu.sa

Cite this article: 

H Mahfoz Kotb, Mohamad M Ahmad Electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 ceramics prepared by high energy ball-milling and conventional sintering 2016 Chin. Phys. B 25 128201

[1] Subramanian M A, Li D, Duan N, Reisner B A and Sleight A W 2000 J. Solid State Chem. 151 323
[2] Ren H, Liang P and Yang Z 2010 Mater. Res. Bull. 45 1608
[3] Brunet M, Mafhoz Kotb H, Bouscayrol L, Scheid E, Andrieux M, Legros C and Schamm-Chardon C 2011 Thin Solid Films 519 5638
[4] Kim C H, Jang Y H, Seo S J, Song C H, Son J Y, Yang Y S and Cho J H 2012 Phys. Rev. B 85 245210
[5] Yang Z, Zhang Y, Lu Z H, Zhang K, Xiong R and Shi J 2013 J. Am. Ceram. Soc. 96 806
[6] Liang P F, Chao X L, Wang F, Liu Z Q and Yang Z P 2013 J. Am. Ceram. Soc. 96 3883
[7] Ahmad M M, Yamane Y and Yamada K 2013 Mater. Sci. Eng. B 178 965
[8] Liang P, Chao X and Yang Z 2014 J. Appl. Phys. 116 044101
[9] Homes C C, Vogt T, Shapiro S M, Wakimoto S and Ramirez A P 2001 Science 293 673
[10] Krohns S, Lunkenheimer P, Meissner S, Reller A, Gleich B, Rathgeber A, Gaugler T, Buhl H U, Sinclair D C and Loidl A 2011 Nat. Mater. 10 899
[11] Chen J W and Narsinga R G 2011 IEEE T. Magn. 47 3772
[12] Deepthi K R, Pandiyarajan T and Karthikeyan B 2013 J. Mater. Sci.:Mater. Electron. 24 1045
[13] Sinclair D C, Adams T B, Morrison F D and West A R 2002 Appl. Phys. Lett. 80 2153
[14] Liu J, Duan C G, Mei W N, Smith R W and Hardy J R 2005 J. Appl. Phys. 98 093703
[15] Adams T B, Sinclair D C and West A R 2006 Phys. Rev. B 73 094124
[16] Marchin L, Guillemet-Fritsch S, Durand B, Levchenko A A, Navrotsky A and Lebey T 2008 J. Am. Ceram. Soc. 91 485
[17] Masingboon C, Thongbai P, Maensiri S and Yamwong T 2009 Appl. Phys. A 96 595
[18] Hao W, Zhang J, Tan Y and Su W 2009 J. Am. Ceram. Soc. 92 2937
[19] Ahmad M M 2013 Appl. Phys. Lett. 102 232908
[20] Jana P K, Mukherjee S and Chaudhuri B K 2014 J. Phys. D:Appl. Phys. 47 365302
[21] Khemprasit J and Khumpaitool B 2015 Ceram. Int. 41 663
[22] Bochenek D, Niemiec P and Adamczyk M 2015 Eur. Phys. J. B 88 278
[23] Wang Z, Li H J, Zhang L L, Wen Y F and Pu Y P 2015 J. Mater. Sci.:Mater. Electron. 26 134
[24] Zhao F, Yue Z, Pei J, Zhuang H, Gui Z and Li L 2007 J. Am. Ceram. Soc. 90 2461
[25] Boonlakhorn J, Kidkhunthod P and Thongbai P 2015 J. Eur. Ceram. Soc. 35 3521
[26] Kum-onsa P, Thongbai P, Putasaeng B, Yamwong T and Maensiri S 2015 J. Eur. Ceram. Soc. 35 1441
[27] Li J, Wu K, Jia R, Hou L, Gao L and Li S 2016 Mater. & Design, 92 546
[28] Somphan W, Thongbai P, Yamwong T and Maensiri S 2013 Mater. Res. Bull. 48 4087
[29] Yang Z P, Ren H M, Chao X L and Liang P F 2012 Mater. Res. Bull. 47 1273
[30] Thongbai P, Yamwong T and Maensiri S 2012 Res. Bull. 47 432
[31] Liu Z, Jiao G, Chao X and Yang Z 2014 J. Mater. Sci.:Mater. Electron. 25 2096
[32] Shao S F, Zhang J L, Zheng P, Zhong W L and Wang C L 2006 J. Appl. Phys. 99 084106
[33] Fang T T, Mei L T and Ho H F 2006 Acta Mater. 54 2867
[34] Liang K C, Liu H L, Yang H D, Mei W N and Ling D C 2008 J. Phys.:Condens. Matter 20 275238
[35] Yuan W 2009 J. Phys. D:Appl. Phys. 42 175401
[36] Meeporn K, Yamwong T, Pinitsoontorn S, Amornkitbamrung V and Thongbai P 2014 Ceram. Int. 40 15897
[37] Wu J, Nan C W, Lin Y and Deng Y 2002 Phys. Rev. Lett. 89 217601
[38] Liang P, Li F, Chao X and Yang Z 2015 Ceram. Int. 41 11314
[39] Ahmad M M, Al-Libidi E, Al-Jaafari A, Syed Ghazanfar S and Yamada K 2014 Appl. Phys. A 116 1299
[40] Li M, Feteria A and Sinclair D C 2009 J. Appl. Phys. 105 114109
[41] Liang P, Li Y, Zhao Y, Wei L and Yang Z 2013 J. Appl. Phys. 113 224102
[42] Wang C, Zhang M N, Xu K B and Wang G J 2012 J. Appl. Phys. 112 034109
[43] Irvine J T S, Sinclair D C and West A R 1990 Adv. Mater. 2 132
[44] Yuan W X and Li Z J 2012 J. Phys. Chem. Solids 73 599
[45] Somphan W, Sangwong N, Yamwong T and Thongbai P 2012 J. Mater. Sci.:Mater. Electron. 23 1229
[46] Jia R, Zhao X, Lia J and Ta X 2014 Mater. Sci. Eng. B 185 79
[47] Liang P, Yang Z and Chao X 2016 J. Alloys. Compd. 678 273
[48] Ni L and Chen X M 2010 J. Am. Ceram. Soc. 93 184
[49] Ahmad M M and Mahfoz Kotb H 2015 J. Mater. Sci.:Mater. Electron. 26 8939
[50] Yang L, Huang G, Wang T, Hao H and Tian Y 2016 Ceram. Int. 42 9935
[51] Thomas H, Abraham K, Thomas J and Saban K V 2015 Ceram. Int. 41 10250
[1] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[2] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[5] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[6] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[7] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[8] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[9] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[10] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[11] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[12] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[13] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[14] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[15] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
No Suggested Reading articles found!