INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 ceramics prepared by high energy ball-milling and conventional sintering |
H Mahfoz Kotb1,2, Mohamad M Ahmad1,3 |
1. Department of Physics, College of Science, King Faisal University, Al-Hassa 31982, Saudi Arabia;
2. Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Egypt;
3. Department of Physics, Faculty of Science, Assiut University, The New Valley, El-Kharga 72511, Egypt |
|
|
Abstract We report on the measurements of the electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 (NLCTO) ceramics prepared by high energy ball-milling and conventional sintering without any calcination steps. The x-ray powder diffraction analysis shows that pure perovskite-like CCTO phase is obtained after sintering at 1025℃-1075℃. Higher sintering temperatures result in multi-phase ceramics due to thermal decomposition. Scanning electron microscope observations reveal that the grain size is in a range of ~3 μm-5 μm for these ceramics. Impedance spectroscopy measurements performed in a wide frequency range (1 Hz-10 MHz) and at various temperatures (120 K-470 K) are used to study the dielectric and electrical properties of NLCTO ceramics. A good compromise between high ε' (5.7×103 and 4.1×103 at 1.1 kHz and 96 kHz, respectively) and low tanδ (0.161 and 0.126 at 1.1 kHz and 96 kHz, respectively) is obtained for the ceramic sintered at 1050℃. The observed high dielectric constant behavior is explained in terms of the internal barrier layer capacitance effect.
|
Received: 03 July 2016
Revised: 23 August 2016
Accepted manuscript online:
|
PACS:
|
82.45.Xy
|
(Ceramics in electrochemistry)
|
|
81.20.Ev
|
(Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)
|
|
77.22.Gm
|
(Dielectric loss and relaxation)
|
|
84.37.+q
|
(Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))
|
|
Corresponding Authors:
H Mahfoz Kotb, Mohamad M Ahmad
E-mail: hkotb@kfu.edu.sa;mmohamad@kfu.edu.sa
|
Cite this article:
H Mahfoz Kotb, Mohamad M Ahmad Electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 ceramics prepared by high energy ball-milling and conventional sintering 2016 Chin. Phys. B 25 128201
|
[1] |
Subramanian M A, Li D, Duan N, Reisner B A and Sleight A W 2000 J. Solid State Chem. 151 323
|
[2] |
Ren H, Liang P and Yang Z 2010 Mater. Res. Bull. 45 1608
|
[3] |
Brunet M, Mafhoz Kotb H, Bouscayrol L, Scheid E, Andrieux M, Legros C and Schamm-Chardon C 2011 Thin Solid Films 519 5638
|
[4] |
Kim C H, Jang Y H, Seo S J, Song C H, Son J Y, Yang Y S and Cho J H 2012 Phys. Rev. B 85 245210
|
[5] |
Yang Z, Zhang Y, Lu Z H, Zhang K, Xiong R and Shi J 2013 J. Am. Ceram. Soc. 96 806
|
[6] |
Liang P F, Chao X L, Wang F, Liu Z Q and Yang Z P 2013 J. Am. Ceram. Soc. 96 3883
|
[7] |
Ahmad M M, Yamane Y and Yamada K 2013 Mater. Sci. Eng. B 178 965
|
[8] |
Liang P, Chao X and Yang Z 2014 J. Appl. Phys. 116 044101
|
[9] |
Homes C C, Vogt T, Shapiro S M, Wakimoto S and Ramirez A P 2001 Science 293 673
|
[10] |
Krohns S, Lunkenheimer P, Meissner S, Reller A, Gleich B, Rathgeber A, Gaugler T, Buhl H U, Sinclair D C and Loidl A 2011 Nat. Mater. 10 899
|
[11] |
Chen J W and Narsinga R G 2011 IEEE T. Magn. 47 3772
|
[12] |
Deepthi K R, Pandiyarajan T and Karthikeyan B 2013 J. Mater. Sci.:Mater. Electron. 24 1045
|
[13] |
Sinclair D C, Adams T B, Morrison F D and West A R 2002 Appl. Phys. Lett. 80 2153
|
[14] |
Liu J, Duan C G, Mei W N, Smith R W and Hardy J R 2005 J. Appl. Phys. 98 093703
|
[15] |
Adams T B, Sinclair D C and West A R 2006 Phys. Rev. B 73 094124
|
[16] |
Marchin L, Guillemet-Fritsch S, Durand B, Levchenko A A, Navrotsky A and Lebey T 2008 J. Am. Ceram. Soc. 91 485
|
[17] |
Masingboon C, Thongbai P, Maensiri S and Yamwong T 2009 Appl. Phys. A 96 595
|
[18] |
Hao W, Zhang J, Tan Y and Su W 2009 J. Am. Ceram. Soc. 92 2937
|
[19] |
Ahmad M M 2013 Appl. Phys. Lett. 102 232908
|
[20] |
Jana P K, Mukherjee S and Chaudhuri B K 2014 J. Phys. D:Appl. Phys. 47 365302
|
[21] |
Khemprasit J and Khumpaitool B 2015 Ceram. Int. 41 663
|
[22] |
Bochenek D, Niemiec P and Adamczyk M 2015 Eur. Phys. J. B 88 278
|
[23] |
Wang Z, Li H J, Zhang L L, Wen Y F and Pu Y P 2015 J. Mater. Sci.:Mater. Electron. 26 134
|
[24] |
Zhao F, Yue Z, Pei J, Zhuang H, Gui Z and Li L 2007 J. Am. Ceram. Soc. 90 2461
|
[25] |
Boonlakhorn J, Kidkhunthod P and Thongbai P 2015 J. Eur. Ceram. Soc. 35 3521
|
[26] |
Kum-onsa P, Thongbai P, Putasaeng B, Yamwong T and Maensiri S 2015 J. Eur. Ceram. Soc. 35 1441
|
[27] |
Li J, Wu K, Jia R, Hou L, Gao L and Li S 2016 Mater. & Design, 92 546
|
[28] |
Somphan W, Thongbai P, Yamwong T and Maensiri S 2013 Mater. Res. Bull. 48 4087
|
[29] |
Yang Z P, Ren H M, Chao X L and Liang P F 2012 Mater. Res. Bull. 47 1273
|
[30] |
Thongbai P, Yamwong T and Maensiri S 2012 Res. Bull. 47 432
|
[31] |
Liu Z, Jiao G, Chao X and Yang Z 2014 J. Mater. Sci.:Mater. Electron. 25 2096
|
[32] |
Shao S F, Zhang J L, Zheng P, Zhong W L and Wang C L 2006 J. Appl. Phys. 99 084106
|
[33] |
Fang T T, Mei L T and Ho H F 2006 Acta Mater. 54 2867
|
[34] |
Liang K C, Liu H L, Yang H D, Mei W N and Ling D C 2008 J. Phys.:Condens. Matter 20 275238
|
[35] |
Yuan W 2009 J. Phys. D:Appl. Phys. 42 175401
|
[36] |
Meeporn K, Yamwong T, Pinitsoontorn S, Amornkitbamrung V and Thongbai P 2014 Ceram. Int. 40 15897
|
[37] |
Wu J, Nan C W, Lin Y and Deng Y 2002 Phys. Rev. Lett. 89 217601
|
[38] |
Liang P, Li F, Chao X and Yang Z 2015 Ceram. Int. 41 11314
|
[39] |
Ahmad M M, Al-Libidi E, Al-Jaafari A, Syed Ghazanfar S and Yamada K 2014 Appl. Phys. A 116 1299
|
[40] |
Li M, Feteria A and Sinclair D C 2009 J. Appl. Phys. 105 114109
|
[41] |
Liang P, Li Y, Zhao Y, Wei L and Yang Z 2013 J. Appl. Phys. 113 224102
|
[42] |
Wang C, Zhang M N, Xu K B and Wang G J 2012 J. Appl. Phys. 112 034109
|
[43] |
Irvine J T S, Sinclair D C and West A R 1990 Adv. Mater. 2 132
|
[44] |
Yuan W X and Li Z J 2012 J. Phys. Chem. Solids 73 599
|
[45] |
Somphan W, Sangwong N, Yamwong T and Thongbai P 2012 J. Mater. Sci.:Mater. Electron. 23 1229
|
[46] |
Jia R, Zhao X, Lia J and Ta X 2014 Mater. Sci. Eng. B 185 79
|
[47] |
Liang P, Yang Z and Chao X 2016 J. Alloys. Compd. 678 273
|
[48] |
Ni L and Chen X M 2010 J. Am. Ceram. Soc. 93 184
|
[49] |
Ahmad M M and Mahfoz Kotb H 2015 J. Mater. Sci.:Mater. Electron. 26 8939
|
[50] |
Yang L, Huang G, Wang T, Hao H and Tian Y 2016 Ceram. Int. 42 9935
|
[51] |
Thomas H, Abraham K, Thomas J and Saban K V 2015 Ceram. Int. 41 10250
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|